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ABSTRACT

This paper addresses the detection of a single signal in a multipath
propagation channel using a sensors array in the case where the num-
ber of sensors M and the number of observations N are large and
of the same order of magnitude and where the number of paths P
is much smaller than M and N . In contrast with the single path
context, the GLRT test cannot be implemented, and we evaluate the
behaviour of tests based on the largest eigenvalues of the empirical
spatio-temporal covariance matrix. Using a technical result showing
that the largest singular values of low rank deterministic pertubation
of certain Gaussian block-Hankel large random matrices behave as
if the entries of the latter random matrices were independent identi-
cally distributed, we obtain a clear understanding of the advantages
of the use of the spatial-temporal covariance matrix.

1. INTRODUCTION

The multi-antenna detection of low rank non observable narrow
band signals corrupted by an additive spatially and temporally white
Gaussian noise is a fundamental problem that was studied exten-
sively in the contexts of array processing (see e.g. [6], [4]) and more
recently of spectrum sensing (see among others [17], [14], [7]).
The most popular method to solve the above problem is the GLRT
test (see e.g [13]), which, in the present case, can be expressed
in closed form. In order to obtain some insights on the statistical
performance of the GLRT test, it is standard to assume that the
number of observations N converge towards ∞, and to characterize
the asymptotic distribution of the GLRT statistics under the null
and the alternative hypothesis. In practice, this approach provides
reasonable results when N is much larger than the number of an-
tennas M at the receiver side. When the antenna array is large, the
assumption that N >> M is often not justified and the standard
asymptotic analysis does not provide reliable results (see e.g. [8] in
the context of supervised detection). In this context, it is now stan-
dard to consider the large system regime M → +∞, N → +∞ in
such a way that M

N
→ c where c > 0. We refer the reader to the

papers [1], [16], [12], [5] in which this approach is developed.

In this paper, we assume that M and N are large and of the same
order of magnitude. We address the detection of a single signal in a
multipath propagation channel, i.e. its contribution to the observa-
tion coincides with the output of an unknown finite impulse response
SIMO filter driven by an unobservable deterministic scalar sequence
s = (sn)n∈�. The signal to be detected is thus a rank 1 wideband
signal. We assume moreover that the number of paths P , or equiva-
lently the number of coefficients of the SIMO filter is much smaller
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than M . [17] studied the GLRT test when s is an i.i.d. Gaussian
sequence and the filter has an infinite impulse response, or equiva-
lently when P = +∞. Under certain assumptions, [17] proposed
to evaluate the log likelihood ratio using the Witthle approximation,
and obtained an expression based on integrals over the frequency do-
main. When P is finite, the GLRT test cannot be expressed in closed
form because the maximization of the likelihood over sequence s
and the filter coefficients (hp)p=0,...,P−1 has no explicit solution.

As the GLRT test cannot be used, a pragmatic approach is to ob-
serve that the signal to be detected can be interpreted as a superposi-
tion of P narrow band deterministic signals. Therefore, it is possible
to use the corresponding GLRT test which consists in comparing the
sum of the P greatest eigenvalues of the empirical spatial covariance
matrix of the observation to a threshold, at least if the noise vari-
ance is known. However, it is intuitively more appealing to consider
the greatest eigenvalues of the empirical spatio-temporal covariance
matrix in order to take benefit of the particular convolutive struc-
ture of the signal to be detected. We compare these 2 approaches in
the asymptotic regime M → +∞, N → +∞ in such a way that
M
N

→ c where c > 0. In this regime, the first order behaviour of
the largest eigenvalues of the empirical spatial covariance matrix is
well known, and this allows to evaluate the relevance of the ”nar-
row band” test. In this paper, we use the recent result [15] in order
to evaluate the behaviour of the greatest eigenvalues of the empiri-
cal spatio-temporal covariance matrix. This allows to have a clear
understanding of the advantages of the use of the spatio-temporal
covariance matrix.

This paper is organized as follows. In section 2, we introduce
the signal models and the underlying assumptions. In section 3, we
present our results concerning the behaviour of the greatest eigenval-
ues of the empirical spatio-temporal covariance matrix, and deduce
from this in section 4 the first order behaviour of the detection test
based on this matrix. Finally, section 5 presents numerical experi-
ments sustaining our theoretical results.

In the following, Nc(x,Γ) represents the M -variate complex
Gaussian (i.e. circular) distribution with mean x and covariance ma-
trix Γ

2. PROBLEM FORMULATION.

In the following, we denote by (yn)n=1,...,N the M -dimensional
signal received on the M -sensors array. Under hypothesis H0, the
observation is reduced to a spatially and temporally complex Gaus-
sian noise, i.e.

yn = vn, n = 1, . . . , N (1)

where (vn)n=1,...,N are i.i.d. Nc(0, σ
2I) distributed random vec-

tors. We assume from now on that σ2 is known in order to simplify
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the exposition, but our results can be easily generalized if σ2 is un-
known (see below). Under hypothesis H1, the observation is given
by

yn =

P−1∑
p=0

hpsn−p + vn, n = 1, . . . , N (2)

where (sn)n∈� is a non observable deterministic scalar sequence

and where the M × 1 transfer function h(z) =
∑P−1

p=0 hpz
−p is

unknown. We however assume that P is known, which, in prac-
tice, means that an upper bound of the number of paths is available.
s is assumed deterministic in order to avoid formulating restrictive
hypotheses,e.g. that signal (sn)n∈� is an i.i.d. Gaussian sequence.

In order to test hypothesis H0 versus H1, the GLRT test can-
not be implemented because, under H1, the maximum likelihood
estimator of filter h(z) and sequence (sn)n=−(P−1),...,N cannot be
expressed in closed form (see e.g. [18], [11]). We note that when s
is an i.i.d. Gaussian sequence, [17] derived an approximate GLRT
test based on the Whittle approximation, but without assuming that
filter h(z) is FIR. Moreover, the approach of [17] needs the ob-
servation of at least M independent realizations of the observation
(yn)n=1,...,N , an hypothesis which is not formulated in the present
paper. Finally, the approach of [17] cannot be adapted to the case of
a deterministic signal (sn)n∈�.

As the GLRT test cannot be implemented, we study pragmatic
alternative approaches. The most obvious solution is based on the
observation that signal [h(z)]s(n) =

∑P−1
p=0 hpsn−p can be inter-

preted as a superposition of P narrow band signals. It is thus possible

to test the hypothesis H0 against hypothesis H
′
1 defined by

yn =

P−1∑
p=0

hps
(p)
n + vn (3)

where signals (s(p))p=0,...,P−1 are non observable deterministic sig-

nals. Hypothesis H
′
1 is of course not equivalent to H1 because the

particular structure of s
(p)
n = sn−p is ignored in the formulation

of H
′
1. We denote by Y the M × N matrix defined by Y =

(y1, . . . ,yN ). Then, H
′
1 is of course equivalent to

Y = A+V (4)

where A is a rank P deterministic matrix, and where V is defined
as Y. The corresponding GLRT test is easy to derive, and consists
in comparing the statistics

ηN =

P∑
i=1

λi

(
YY∗

N

)
(5)

to a threshold. Here,
(
λi

(
YY∗
N

))
i=1,...,M

represent the eigenval-

ues of YY∗
N

arranged in decreasing order.

Matrix YY∗
N

coincides with the empirical spatial covariance ma-
trix of the observations. In order to take benefit of the particular
convolutive structure of signal [h(z)]sn, it seems however more ap-
propriate to consider a statistics based on the largest eigenvalues of
empirical spatio-temporal covariance matrices. If L is an integer, we

denote by y
(L)
n the ML–dimensional vector defined by

y(L)
n = (y1,n, . . . ,y1,n+L−1, . . . ,yM,n, . . . ,yM,n+L−1)

T

and by Y(L) the ML×N block-Hankel matrix defined by Y(L) =

(y
(L)
1 , . . . ,y

(L)
N ). Thus

Y(L)(Y(L))∗
N

represents the spatio-temporal

covariance matrix. We note that Y(L) depends on (yn)n=1,...,N+L−1

while, in principle, the observation yn is available until n = N .
As we consider in the following asymptotic regimes in which
N → +∞ while L remains fixed, the above mentioned end ef-
fect has no consequence on our results.

Under hypothesis H0, matrix Y(L) is reduced to V(L), and un-
der H1, it holds that

Y(L) = H(L)S(L) +V(L)
(6)

where matrix S(L) is the (P + L − 1) × N Hankel matrix defined

by (S(L))i,n = sn+i−P , and where H(L) is defined by H(L) =

(H
(L)T
1 , . . . ,H

(L)T
M )T with H

(L)
m representing the L× (P +L−1)

Toeplitz matrix corresponding to the convolution of signal (sn)n∈�
with sequence (hm,p)p=0,...,P−1. We remark that matrices Y(1)

and V(1) coincide with Y and V. We also denote matrices S(1) and
H(1) by S and H. Instead of using ηN defined by (5), we propose

to consider the statistics η
(L)
N given by

η
(L)
N =

P+L−1∑
i=1

λi

(
Y(L)Y(L)∗

N

)
(7)

for a suitable value of integer L. We note that if L = 1, then Y(1)

and η
(1)
N coincide with Y and ηN .

In order to obtain some insights on the merits of statistics η
(L)
N

in the case where M and N are large and of the same order of mag-
nitude, we evaluate under both hypotheses the first order behaviour

of η
(L)
N in the asymptotic regime M → +∞, N → +∞ in such a

way that cN = M
N

→ c where c > 0. We also assume that P and
L do not scale with M,N . In the following, N → +∞ should be

understood as the above asymptotic regime. The study of η
(L)
N when

N → +∞ is equivalent to the study of the largest eigenvalues of

matrix Y(L)Y(L)∗
N

. As we shall see below, the case L = 1 is well
known, and followed from existing results (see e.g. [3]) concerning
the behaviour of the largest singluar values of finite rank perturba-
tion of the i.i.d. large random matrix V. If L > 1, matrix V(L)

is block-Hankel, and its entries are of course not i.i.d. Our main

result shows that the largest eigenvalues of Y(L)Y(L)∗
N

behave as if

the MLN entries of V(L) were i.i.d. This behaviour appears as a
consequence of the results of [15].

Remark 1: The case σ2 unknown. When σ2 is unknown, the
GLRT test corresponding to hypotheses H0 and H

′
1 given by (4) con-

sists in comparing statistics ηN
1
M

Tr(YY∗/N)
to a threshold. Therefore,

it is relevant to replace statistics η
(L)
N by

η
(L)
N

1
M

Tr(Y(L)Y(L)∗/N)
. It is

easily seen that 1
M
Tr(Y(L)Y(L)∗/N) converges almost surely to-

wards σ2 in the absence and in the presence of signal. Therefore, the

characterization of first order asymptotic behaviours of η
(L)
N and of

its normalized version are equivalent.

3. LARGEST EIGENVALUES OF THE EMPIRICAL
SPATIO-TEMPORAL COVARIANCE MATRIX.

In order to simplify the notations, we denote by W
(L)
N , B

(L)
N and

X
(L)
N the matrices defined by W

(L)
N = V

(L)
N /

√
N , B

(L)
N =

1√
N
H(L)S(L) and X

(L)
N = B

(L)
N + W

(L)
N . We notice that

Y(L)/
√
N coincides with W

(L)
N under H0 and with X

(L)
N under

H1. This paper is based on a technical result which establishes that,

in a certain sense, the eigenvalues of matrix W
(L)
N W

(L)∗
N behave as
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if the entries of W
(L)
N were i.i.d. In order to state the correspond-

ing result, we recall that the Marcenko-Pastur distribution μd with
parameters (σ2, d) is the probability distribution defined by

dμ(x) = δ0[1− d−1]+ +

√
(x− x−) (x+ − x)

2σ2dπx
1
[x−

d
,x+

d
]
(x) dx

with x−
d = σ2(1 − √

d)2 and x+
d = σ2(1 +

√
d)2. We denote

by md(z) its Stieltjes transform defined by md(z) =
∫
�

dμ(λ)
λ−z

and by m̃d(z) the function m̃d(z) = dm(z) − (1 − d)/z.

We denote by QN (z) and Q̃N (z) the so-called resolvent of

matrices W
(L)
N W

(L)∗
N and W

(L)∗
N W

(L)
N defined by QN (z) =(

W
(L)
N W

(L)∗
N − zIM−L+1

)−1

,Q̃N (z) =
(
W

(L)∗
N W

(L)
N − zINL

)−1

Then, when N → +∞, the following result holds.

Proposition 1: The eigenvalue distribution of matrix W
(L)
N W

(L)∗
N

converges almost surely towards the Marcenko-Pastur distribution
μcL. Moreover, for each fixed integer k, the k largest eigenvalues

(λl(W
(L)
N W

(L)∗
N ))l≤k verify

λl(W
(L)
N W

(L)∗
N ) → x+,cL = σ2(1 +

√
cL)2 a.s. (8)

and the k smallest non zero eigenvalues of W
(L)
N W

(L)∗
N converge

almost surely towards x−,cL. If aN ,bN are 2 unit norm ML–
dimensional deterministic vectors, then it holds that for each z ∈ C+

a∗
N (QN (z)−mcL(z)I)bN → 0 a.s. (9)

Similarly, if ãN , b̃N are 2 unit norm N–dimensional deterministic
vectors, then for each z ∈ C+, it holds that

ã∗
N

(
Q̃N (z)− m̃cl(z)I

)
b̃N → 0 a.s. (10)

Moreover, for each z ∈ C+, it holds that

a∗
N

(
QN (z)W

(L)
N

)
b̃N → 0 a.s. (11)

Finally, for each ε > 0, convergence properties (9, 10, 11) hold
uniformly w.r.t. z on each compact subset of C − [0, x+ + ε].

The proof of Proposition 1 can be found in [ [9], Proposition 1].
We recall that, roughly speaking, the convergence of the eigenvalue

distribution of W
(L)
N W

(L)∗
N towards distribution μcL means that the

histogramms of the eigenvalues of any realization of W
(L)
N W

(L)∗
N

tend to accumulate around the graph of the probability density of
μcL.

The statements of Proposition 1 are well known when L = 1.
Apart (10) and (11), Proposition 1 appears as a consequence of the
results of [15]. We note that [15] is used here when L does not
scale with (M,N). However, the results of [15], and thus Proposi-
tion 1, are still valid if L and M both converge towards infinity in
such a way that ML/N → d with d > 0 and that L = O(Nα)
with α < 2/3. In this case, parameter cL in Proposition 1 should
be replaced by d. If 2/3 ≤ α < 1, the eigenvalue distribution of

W
(L)
N W

(L)∗
N still converges towards μd, but the almost sure con-

vergence of the largest and smallest eigenvalues of W
(L)
N W

(L)∗
N

towards x+,d and x−,d is not guaranteed. We finally note that if
N and L converge toward ∞ at the same rate and that M remains

fixed, the convergence of the eigenvalue distribution W
(L)
N W

(L)∗
N

towards μd is no longer true. Intuitively, this is because W
(L)
N de-

pends on MN independent random variables, and that if M is fixed,

this number is not sufficient to ensure nice averaging effects. In par-
ticular, if M = 1, it is shown in [2] that the eigenvalue distribution

of W
(L)
N W

(L)∗
N converges towards an unbounded probability distri-

bution that can be characterized by its moments.

We finally remark that the almost sure convergence of the ex-
treme eigenvalues towards x+,cL = σ2(1 +

√
cL)2 and x−,cL =

σ2(1 − √
cL)2 also implies that the non zero eigenvalues of

W
(L)
N W

(L)∗
N are almost surely located in a neighborhood of

[σ2(1 − √
cL)2, σ2(1 +

√
cL)2] when N increases. Proposition 1

thus allows to have a clear understanding of the effect of L on the

spreading of the eigenvalues W
(L)
N W

(L)∗
N .

In the following, we denote by (λ̂
(L)
k,N )k=1,...,ML the eigenvalues

of X
(L)
N X

(L)∗
N , and by λ

(L)
1,N ≥ λ

(L)
2,N . . . ≥ λ

(L)
P+L−1,N the non

zero eigenvalues of B
(L)
N B

(L)∗
N . Proposition 1 allows to generalize

immediately the approach used in [3], and to prove that the P+L−1

greatest eigenvalues of X
(L)
N X

(L)∗
N also behave as if the entries of

W
(L)
N were i.i.d.

Theorem 1: We assume that:

Assumption 1: The P+L−1 non zero eigenvalues (λ
(L)
k,N )k=1,...,K

of matrix B
(L)
N B

(L)∗
N converge towards λ

(L)
1 ≥ λ

(L)
2 ≥ . . . ≥

λ
(L)
P+L−1 when N → +∞.

We denote by KL, 0 ≤ KL ≤ P + L − 1, the largest integer for

which λ
(L)
KL

> σ2
√
cL. Then, for k = 1, . . . ,KL, it holds that

λ̂
(L)
k,N

a.s.−−−−→
N→∞

ρ
(L)
k = φL(λ

(L)
k ) =

(λ
(L)
k + σ2)(λ

(L)
k + σ2cL)

λ
(L)
k

> x+,cL.

while for k = KL + 1, . . . , P + L− 1, λ̂
(L)
k,N → x+,cL a.s.

4. ASYMPTOTIC BEHAVIOUR OF η
(L)
N .

In order to simplify the following discussion, we formulate the
following hypotheses on vectors (hp)p=0,...,P−1 and on signal
(sn)n∈�:

Assumption 2: • (i) When N → +∞, matrix H∗H converges
towards a P × P matrix Δ

• (ii) For each integers i, j ≥ 1, 1
N

∑N
n=1 sn+i−P s

∗
n+j−P con-

verges towards a limit. In this case, the limit only depends on
i− j, and is denoted Ri−j .

As the entries of matrix H(L)∗H(L) depend on the entries of H∗H,
(i) implies that H(L)∗H(L) converges towards a matrix Δ(L) whose
entries depend on the entries of Δ. In the following, we also denote
by R(L) the (P +L− 1)× (P +L− 1) Toeplitz matrix defined by

R
(L)
i,j = Ri−j .

As the non zero eigenvalues of B
(L)
N B

(L)∗
N coincide with the

eigenvalues of matrix H(L)∗H(L) S(L)S(L)∗
N

, it is clear that As-

sumption 2 implies that Assumption 1 holds, and that λ
(L)
k =

λk

(
Δ(L)R(L)

)
. We also remark that for each L ≥ 1, ma-

trix B
(L)
N B

(L)∗
N is a sub-matrix of B

(L+1)
N B

(L+1)∗
N . Therefore

(see [10]), it holds that λ
(L)
k,N ≤ λ

(L+1)
k,N , and therefore that λ

(L)
k ≤

λ
(L+1)
k and ρ

(L)
k ≤ ρ

(L+1)
k for each k = 1, . . . , P + L− 1.
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We now use Theorem 1 in order to evaluate the behaviour of
η
(L)
N . It is clear that η

(L)
N converges almost surely η(L) defined by

η(L) =

KL∑
k=1

ρ
(L)
k + (P + L− 1−KL)σ

2(1 +
√
cL)2) (12)

We note that if KL = 0, or equivalently, if the largest eigenvalue

λ
(L)
1,N of matrix B

(L)
N B

(L)∗
N is below the detectability threshold

σ2
√
cL for each N large enough, then the first order asymptotic be-

haviour of η
(L)
N under hypotheses H0 and H1 coincide. In this case,

the test based on η
(L)
N is not consistent, in the sense that it does not

allow to distinguish between the 2 hypotheses when N → +∞. If

however λ
(L)
1,N is greater

√
cL for each N large enough, the asymp-

totic behaviours of η
(L)
N under H0 and H1 do not coincide and the

test is consistent. In other words, the test based on η
(L)
N is consistent

if and only if

λ
(L)
1

σ2
√
cL

> 1 (13)

This condition implies that the value of L for which
λ
(L)
1√
cL

is maxi-

mum can be considered as optimal from the consistency of the GLRT
test point of view. In order to obtain some insights on the optimal
choice of L, we first assume that (sn)n∈� coincides with a realiza-
tion of a unit variance zero mean i.i.d. sequence and that the limit
Δ of matrix H∗H is diagonal, a condition meaning that the P paths
are independent. In order to simplify the notations, we denote by
δ0, . . . , δP−1 the diagonal entries of Δ which represent the pow-
ers of the various paths. We notice that

∑P−1
p=0 δp coincides with

the power of the signal to be detected. It is easily seen that for
each L, matrix Δ(L) is diagonal as well, and that its largest entry
is equal to

∑P−1
p=0 δp if L ≥ P , and to maxk=0,...,P−L

∑L−1
p=0 δp+k

if L ≤ P . As matrix R(L) is equal to IP−L+1, this implies that the

largest limit eigenvalue λ
(L)
1 is equal to

∑P−1
p=0 δp if L ≥ P , and to

maxk=0,...,P−L

∑L−1
p=0 δp+k if L ≤ P . If L ≥ P , the left handside

of (13) is equal to

∑P−1
p=0 δp

σ2
√
cL

while it is equal to

maxk=0,...,P−L

∑L−1
p=0 δp+k

σ2
√
cL

if L ≤ P . The optimal value of L of course depends on the particular
values of δ0, . . . , δP−1. If the powers all coincide with δ, the optimal

value is L = P , and the test based on η
(P )
N is consistent if and only if

δ
σ2 is greater than the detectability threshold

√
c/P . In this case, it is

also seen that if L > P , then condition is δ
σ2 >

√
c/P

√
L/P , i.e.

the detectability threshold is multiplied by
√

L/P , while if L = 1,

the detectability threshold is
√
c, and is thus multiplied by

√
P . If

the channel is sparse, the L = P may of course not be the optimal
value.

We now consider a more realistic scenario in which matrix Δ is
not diagonal. We assume that the signal to be detected is a sampled
version of a continuous time linearly modulated signal

∑
n snga(t−

nT ) where (sn)n∈� is an i.i.d. sequence of symbols and where ga(t)
is the classical continuous time shaping filter. The propagation chan-
nel is a Rayleigh multipath channel with Q uncorrelated paths with
time-delays τ0, . . . , τQ−1. In this context, vectors (hp)p=0,...,P−1

are given by

hp =

Q−1∑
q=0

λq ga(pT − τq) (14)

where vectors (λq)q=0,...,Q−1 are the realizations of indepen-
dent zero-mean random Gaussian vectors. We denote by Λ the
M × Q matrix Λ = (λ0, . . . ,λQ−1), and assume that matrix
Λ∗Λ converges towards μIQ. In practice, this hypothesis means
that the Q paths share the same power. As H = (hP−1, . . . ,h0)
is given by H = ΛG where G = (gP−1, . . . ,g0) and where
each Q–dimensional vector gp is given by gp = (ga((P −
1)T − τ0), . . . , ga((P − 1)T − τQ−1))

T , it is clear that matrix

H∗H converges towards Δ = μG∗G, and that H(L)∗H(L) con-
verges towards Δ(L) = μG(L)∗G(L) where matrix G(L) is the
QL × (P + L − 1) block-Toeplitz matrix with first block line

(gP−1, . . . ,g0, 0, . . . , 0). Therefore, the largest eigenvalue λ
(L)
1 of

Δ(L) is equal to μλ1(G
(L)∗G(L)). The optimal value of L thus

depends on the way the largest eigenvalue of G(L)∗G(L) increases
with L. As the optimal value of L cannot be found using analytical
arguments, we give a numerical example. We assume that ga(t)
is a square root Nyquist filter with excess bandwidth 0.5 which is
truncated to interval [−2.5T, 2.5T ]. Moreover, Q = 2, τ0 = 0,
τ1 = 2T , c = 1/2 and the SNR μ

σ2 is equal to 2 dB. In figure 1,

we plot the largest eigenvalue of G(L)∗G(L) and the lefthandside
of (13) versus L. It is seen that the optimal value of L is equal to 3,
it is thus different from P , which, is the present context is equal to
P = 7.
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Fig. 1. Largest eigenvalues to detectability thresholds versus L

5. SIMULATION RESULTS.
In this section, we provide numerical simulations illustrating the re-
sults given in the previous sections. We first consider the case where
matrix H coincides with a realization of Gaussian random matrix
with i.i.d. N�(0, I/(MP )) entries. In this context, matrix H∗H
converges towards IP . Sequence (sn)n=2−P,...,N−P+1 is a realiza-
tion of an i.i.d. sequence taking values ±1 with probability 1/2. In
this context, we have shown before that the optimal value of L is
equal to P . In order to illustrate this behaviour, we consider the case
M = 80, N = 160 and P = 5, and represent in figure 2 the ROC
curves, evaluated using Monte-Carlo simulations, corresponding to

the statistics η
(5)
N , ηN , λ1(

Y(5)Y(5))∗
N

) and λ1(
YY∗
N

), referred to as
spatio-temporal, spatial, lmax-st and lmax-s in figure 2. The numer-

ical results confirm that the use of η
(5)
N leads to much better results

than the use of ηN which corresponds to L = 1, and that it is indeed
beneficial to take into account the P + L − 1 largest eigenvalues
of the empirical spatio-temporal covariance matrix, and not only the
largest one.

We now generate vectors (hp)p=0,...,P−1 according to model
(14) for Q = 2, τ0 = 0, τ1 = 2T, P = 7 and when ga(t) is a square
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Fig. 2. ROC curves of different statistics,Δ diagonal

root Nyquist filter with excess bandwidth 0.5 which is truncated to
interval [−2.5T, 2.5T ]. In figure 3, we assume that M = 80, N =
160 and again represent the ROC curves corresponding to the statis-

tics η
(L)
N , ηN , λ1(

Y(L)Y(L))∗
N

) and λ1(
YY∗
N

) for L = 3. This time,
it is seen that it is not beneficial to take into account the L+ P − 1
largest eigenvalues of Y(L)Y(L)∗/N , and that the best strategy is to
consider the largest eigenvalue, which, for L = 3, provides the best
results.
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Fig. 3. ROC curves of different statistics, Δ not diagonal

6. CONCLUSION
In this paper, we have studied the detection problem of a signal cor-
rupted by an unknown multipath propagation channel using a sensor
array in the case where the number of sensors M and the number
of observations N are large and of the same order of magnitude.
In this asymptotic regime, we have obtained a clear understading of
the advantages of using statistics based on the largest eigenvalues of
empirical spatio-temporal covariance matrices.
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