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Abstract

Suppose X is an N× n complex matrix whose entries are centered, independent, and identically distributed random
variables with variance 1/n and whose fourth moment is of order O(n−2). Suppose A is a deterministic matrix whose
smallest and largest singular values are bounded below and above respectively, and z 6= 0 is a complex number. First
we consider the matrix XAX∗− z, and obtain asymptotic probability bounds for its smallest singular value when N and n
diverge to infinity and N/n→ γ, 0< γ <∞. Then we consider the special case where A= J = [1i− j=1 mod n] is a circulant
matrix. Using the above result, we show that the limit spectral distribution of XJX∗ exists when N/n→ γ, 0 < γ < ∞ and
describe the limit explicitly. Assuming that X represents a CN -valued time series which is observed over a time window
of length n, the matrix XJX∗ represents the one-step sample autocovariance matrix of this time series. A whiteness test
against an MA correlation model for this time series is introduced based on the above limit result. Numerical simulations
show the excellent performance of this test.

Keywords: Large non-Hermitian matrix theory, Limit spectral distribution, Smallest singular value, Whiteness test
in multivariate time series.
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1 Introduction and the main results

Let (N(n))n≥1 be a sequence of positive integers, such that limn→∞ N(n)/n = γ , 0 < γ < ∞. Let (X (n) = [x(n)i j ]N
(n)−1,n−1

i, j=0 )n≥1

be a sequence of complex random matrices and (A(n)) be a sequence of n×n deterministic matrices with complex entries.
Suppose that

Assumption 1. For each n ≥ 1, the complex random variables {x(n)i j }
N(n)−1,n−1
i, j=0 are i.i.d. with Ex(n)00 = 0, E|x(n)00 |2 = 1/n.

Moreover, there exists a constant m4 such that supn n2E|x(n)00 |4 ≤ m4 < ∞.

Assumption 2.
0 < inf

n
sn−1(A(n))≤ sup

n
s0(A(n))< ∞ ,

where s0(M)≥ ·· · ≥ sn−1(M) will refer hereinafter to the singular values of the matrix M ∈ Cn×n.

We shall first study the probabilistic behavior of the smallest singular value of the matrix X (n)A(n)X (n)∗− zIN , where
M∗ is the Hermitian adjoint of the matrix M, and where z is any non-zero complex number. We shall then use this result to
obtain the limiting spectral behavior of the matrix X (n)J(n)X (n)∗ where J(n) is as in Equation (1) below. Finally, we shall
discuss a statistical application of this last result.

The behavior of the smallest singular value of large random matrices has recently aroused an intense research effort in
the field of random matrix theory. One of the main motivations for this interest is its close connections with the spectral
behavior of large square non-Hermitian random matrices. It is well-known that probabilistic control of the smallest
singular value of the matrix Y − z is a key step towards understanding the behavior of the spectral measure of Y [7].
Starting with the fundamental model where Y has i.i.d. elements, most of the contributions dealing with the smallest
singular value assume the independence between the entries of Y , as seen in [1, 27, 33, 18, 34, 35, 10] among many
others. An increasing degree of generality on the probability law on the independent entries of Y has been considered in
these contributions. On the other side, more structured models, such as the one dealt with in this paper, have received
comparatively much less attention. We can however cite in this respect the works of Girko (see, e.g., his treatise [15]) or
[6, 31], which all deal with quite different models than ours.

Our results will be proved under the following additional assumption on the elements of X (n).
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Assumption 3. The random variables x(n)00 satisfy supn |nE(x
(n)
00 )

2|< 1.

Assumption 3 essentially amounts to demanding that xi j 6∈ R. Indeed, suppose that for some n, |nE(x(n)00 )
2| = 1.

Drop the superscript (n), and write x00 = ℜx00 + ıℑx00. Then, 1/n = |Ex2
00| = E|x00|2. This implies (Eℜx00ℑx00)

2 =
E(ℜx00)

2E(ℑx00)
2. Suppose ℜx00 6≡ 0. Then clearly ℑx00 = αℜx00 with probability one (w.p.1) for some constant α .

Thus, denoting as L
= the equality in law, x00

L
= exp(ıθ)Z, where Z is a real random variable and θ is a constant. This

amounts to x00 being real since the factor exp(ıθ) has no influence on XJX∗.
We can now state our first result. We denote as ‖ · ‖ the spectral norm of a matrix. Events are expressed in the forms

[. . .] or {. . .}.

Theorem 1. Let Assumptions 1, 2, and 3 hold true. Then, there exist α,β > 0 such that for each C > 0, t > 0, and
z ∈ C\{0},

P
[
sN−1(X (n)A(n)X (n)∗− z)≤ t, ‖X‖ ≤C

]
≤ c
(
nα t1/2 +n−β

)
,

where the constant c > 0 depends on C, z, and m4 only.

The first step to prove this theorem is to “linearize” (similar linearizations have been used elsewehere, see, e.g., [21]),
and consider the matrix

H(n) =

(
A(n)−1

X (n)∗

X (n) z

)
∈ C(N+n)×(N+n).

The inversion formula for partitioned matrices implies that ‖(X (n)A(n)X (n)∗− z)−1‖ ≤ ‖H(n)−1‖. Thus, it is enough to
deal with sN+n−1(H(n)). A similar problem was tackled in [30, 38]. We follow closely the approach of [38] but there, the
author had a real symmetric matrix with i.i.d. elements above the diagonal. Our matrix H(n) is more structured, and so we
need appropriate modification in the arguments.

Motivated by the statistical application described in Section 2, we consider the following choice of A(n). Since it is an
orthogonal circulant matrix, it automatically satisfies Assumption 2.

A(n) = J(n) =


0 1

1
. . .
. . . . . .

1 0

 ∈ Rn×n, (1)

Theorem 1 can be used to study the limit eigenvalue distribution of the matrix X (n)J(n)X (n)∗ (see [7] or Section 4 for more
information). Let {λ (n)

0 , . . . ,λ
(n)
N(n)−1

} be its (complex) eigenvalues. The spectral distribution or measure of X (n)J(n)X (n)∗

is the random probability measure:

µn =
1

N(n)

N(n)−1

∑
i=0

δ
λ
(n)
i
.

When N(n)/n→ γ , 0 < γ < ∞, we shall identify a deterministic probability measure µ such that µn⇒ µ in probability,
where ⇒ refers to weak convergence. The limit µ is called the limiting spectral distribution or measure (LSD) of the
sequence of matrices. To describe µ , we need the following function. For any 0 < γ < ∞, let

g(y) =
y

y+1
(1− γ +2y)2, (0∨ (γ−1))≤ y≤ γ. (2)

Then g−1 exists on the interval [0∨ ((γ − 1)3/γ),γ(γ + 1)] and maps it to [0∨ (γ − 1),γ]. It is an analytic increasing
function on the interior of the interval.

Theorem 2. Suppose Assumptions 1 and 3 hold. Then, there exists a deterministic rotationally invariant probability
measure µ on C such that µn⇒ µ in probability. Let the distribution function of its radial component be F(r) = µ({z ∈
C : |z| ≤ r}), 0≤ r < ∞. If γ ≤ 1, then

F(r) =

 γ−1g−1(r2) if 0≤ r ≤
√

γ(γ +1),

1 if r >
√

γ(γ +1).

If γ > 1, then

F(r) =


1− γ−1 if 0≤ r ≤ (γ−1)3/2/

√
γ,

γ−1g−1(r2) if (γ−1)3/2/
√

γ < r ≤
√

γ(γ +1),

1 if r >
√

γ(γ +1).
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The support of µ is the disc {z : |z| ≤
√

γ(γ +1)} when γ ≤ 1, and when γ > 1, it is the ring {z : (γ−1)3/2/
√

γ ≤ |z| ≤√
γ(γ +1)} together with the point {0} which has mass 1− γ−1. Moreover, F(r) has a positive and analytical density on

the open interval (0∨ sign(γ−1)|γ−1|3/2/
√

γ,
√

γ(γ +1)). A closer inspection of g shows that this density is bounded
if γ 6= 1. If γ = 1, then the density is bounded everywhere except when r ↓ 0.

In the next section, we consider a statistical application of this result, belonging to the domain of hypothesis testing.
We then turn to the proofs of our results. Theorem 1 is proven in Section 3, while Sections 4–6 are devoted to the proof
of Theorem 2. Specifically, the main steps of this proof are provided in Section 4. One of these steps is to analyze the
singular value spectrum of X (n)J(n)X (n)∗− z for z ∈ C. This will be done in Section 5. Finally, Section 6 is devoted to the
identification of the measure µ .

2 Application to statistical hypothesis testing
Consider the high dimensional linear moving average time series model

y(n)t =
p

∑
i=0

B(n)
i w(n)

t−i, (3)

where {B(n)
i }

p
i=0 are CN×N deterministic parameter matrices, and {w(n)

i }i are random vectors such that the random matrix

W (n) = (w(n)
0 · · · w(n)

n−1) is equal in distribution to n1/2X (n). Such models have found increasing attention in, e.g., the fields
of signal processing, wireless communications, Radar, Sonar, and wideband antenna array processing [22, 37]. The sample
autocovariance matrices {n−1

∑
n
t=k+1 y(n)t (y(n)t−k)

∗},k ≥ 0, (k is called the lag or the step) carry useful information about
the model (3), specially through their spectral distributions. Some of the works that deal with limit spectral distributions,
mostly for high-dimensional real-valued time series, and their use in statistical inference are, [2, 3, 4, 8, 28, 39, 26, 25, 5].

The k-step sample autocovariance matrices (k 6= 0), are non-Hermitian. To the best of our knowledge LSD results are
known only for certain symmetrized versions of these matrices. All references cited above rely on symmetrization. The
result of Theorem 2 is a beginning towards deriving the LSD of the sample autocovariance matrices in the general model
(3) by considering the simplest case where B(n)

0 = IN and p = 0. This will be called the white noise model.
Consider the problem of testing the white noise model against an MA correlated model. To this end, we explore the

idea of designing a test which is based on the eigenvalue distribution of the one-step sample autocovariance matrix, in
contrast to more classical tests that are based on its singular value distribution. A non-rigorous justification of this idea is
that when performing an eigenvalue-based test, we take advantage of the higher sensitivity of the eigenvalues of a matrix
with respect to perturbations as compared to its singular values.

Assuming for simplicity that p = 1, our purpose is to test the null (white noise) hypothesis H0: B(n)
0 = I,B(n)

1 = 0

against the alternative H1: B(n)
0 = I,B(n)

1 6= 0. Consider the one-step sample autocovariance matrix

R̂(n)
1 =

1
n

n−1

∑
t=0

y(n)t y(n)t−1
∗
,

where the sum is taken modulo n, and observe that under H0, this matrix coincides with X (n)J(n)X (n)∗. We shall consider
the asymptotic regime where n→ ∞ and N/n→ γ > 0. By Theorem 2, the spectral measure of R̂(n)

1 converges weakly in
probability to the measure µ . This suggests the use of a white noise test based on a distance between the spectral measure
of R̂(n)

1 and µ . We consider herein a test based on the 2-Wasserstein distance between these two distributions, which is
known to produce the same topology as the weak convergence topology. For the sake of comparison, we also considered
the more classical singular value based test which consists in comparing N−1 tr R̂(n)

1 (R̂(n)
1 )∗ to a threshold. We denote these

two tests as T1 and T2 respectively. To get a more complete picture of the problem, we also considered a third test which
is based on the eigenvalue distribution of the Hermitian sample covariance matrix

R̂(n)
0,1 =

1
n

n−1

∑
t=0

(
y(n)t

y(n)t−1

)(
y(n)t
∗

y(n)t−1
∗)

.

Its spectral distribution is known to converge weakly almost surely under H0 to the Marchenko-Pastur distribution MP2γ

with parameter 2γ (see [29], which deals with the Gaussian case). This suggests the use of the 2-Wasserstein distance
between the spectral measure of R̂0,1 and MP2γ . We denote the resulting test as T3.

Figures 1a and 1b give the ROC curves for these tests. Tests T1 and T3 were implemented by sampling µ and MP2γ

from the spectra of two large random matrices and by using the transport library of the R software. These figures
clearly show that T1 outperforms T2 and T3. This tends to corroborate the intuition that the eigenvalue sensitivity alluded
to earlier, can be beneficial when it comes to designing white noise tests.
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(a) B(n)
1 = αIN with α2 = 10−2.5.
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(b) B(n)
1 = (b(n)i j ) Toeplitz with b(n)i j ∝ exp(−8|i− j|/N) and

trB(n)
1 (B(n)

1 )∗/N = 10−2.

Fig. 1: ROC curves for the tests T1, T2 and T3 described in Section 2. Setting: (N,n) = (50,100)

To better understand the behavior of the eigenvalue-based tests, the next step would be to study the large dimensional
behavior of the spectral distribution of R̂(n)

1 under H1. It would be also useful to evaluate the test performance for Wasser-
stein distances of orders higher than two. These tasks appear to be quite non-trivial and are left for future research.

Before entering our proofs, let us present some notations. The dimension of a subspace V of some vector space will be
denoted dim(V ). The orthogonal subspace to V will be V⊥. The column span of a matrix M will be denoted as span(M).
Similarly, span(V,d) is the span of the vector space V and the vector d.

The indices of the elements of a vector or a matrix start from zero. Given a positive integer m, we write [m] =
{0, . . . ,m− 1}. For i ∈ [m], we denote as em,i the ith canonical vector of Cm, with 1 at the mth place and 0 elsewhere.
Given a matrix M ∈ Cm×n and two sets I ⊂ [m] and J ⊂ [n], MI ,J denotes the |I | × |J | supmatrix of M that
is obtained by retaining the rows and columns of M whose indices belong to I and J respectively. We also write
M·,k = M[m],{k} and Mk,· = M{k},[n]. We define as ΠI : Cm → Cm the projection operator such that ΠI u is the vector
obtained by setting to zero the elements of u whose indices are in I c. We also denote as uI the vector of C|I | obtained
by removing the elements of u whose indices are in I c. When M is a matrix, ΠM refers to the orthogonal projector on
span(M).

As mentioned above, ‖ · ‖ denotes the spectral norm. It will also denote the Euclidean norm of a vector. The Hilbert-
Schmidt norm of a matrix will be denoted as ‖ · ‖HS. The unit-sphere of Cn will be denoted as Sn−1.

The notations Px and Ex will refer respectively to the probability and the expectation with respect to the law of the
vector x.

3 Proof of Theorem 1: Smallest singular value

To simplify the notations, from now on, we omit the superscript (n). Writing sinf = infn sn−1(A−1) and ssup = supn s0(A−1),
Assumption 2 is rewritten as 0 < sinf ≤ ssup < ∞. We also assume that z 6= 0 without further mention.

3.1 General context and outline of proof
It is enough to establish Theorem 1 under the assumption that the entries have densities. This is because we can replace
the matrix X with, the independent sum (1−n−20)−1/2(X +n−10X ′) where X ′ is a properly chosen matrix whose elements
have densities, and use a standard perturbation argument. Hence, we assume throughout this section that the elements of
X have densities.
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Suppose E ∈CN×n is such that ‖E‖2‖A‖< |z|. Then det(z−EAE∗) 6= 0. This implies that the multivariate polynomial
det(z−XAX∗) in the variables (ℜxi j,ℑxi j)i, j is not identically zero. Since X has a density, we conclude that z−XAX∗ is
invertible w.p. 1. Define the matrix

H =

(
A−1 X∗

X z

)
∈ C(N+n)×(N+n).

By the inversion formula for partitioned matrices, the N×N lower-right block of H−1 coincides with (z−XAX∗)−1. Thus,
‖(XAX∗− z)−1‖ ≤ ‖H−1‖. Therefore, it is enough to prove that

P
[
sN+n−1(H)≤ t, ‖X‖ ≤C

]
≤ c
(
nα t1/2 +n−β

)
, (4)

where c > 0 depends on C, z, and m4 only.
As mentioned earlier, we shall follow here the argument of [38] but we shall need substantial modifications. Here is a

description of the general approach. First recall that

sN+n−1(H) = min
u∈SN+n−1

‖Hu‖.

Invoking an idea that has been frequently used in the literature since [27, 33], we partition SN+n−1 into two sets of so-called
compressible and incompressible vectors as follows.

Let θ ,ρ ∈ (0,1) be fixed. A vector in SN+n−1 is said to be θ -sparse if it does not have more than bθ(N + n)c non-
zero elements. Let SN+n−1

I be the set of vectors of SN+n−1 that are supported by the (index) set I ⊂ [N + n]. Given
S ⊂ CN+n, let Nδ (S) denote the δ -neighborhood of S in CN+n in the Euclidean metric. Given θ ,ρ ∈ (0,1), the set of
(θ ,ρ)-compressible vectors is

comp(θ ,ρ) = SN+n−1∩
⋃

I⊂[N+n]
|I |=bθ(N+n)c

Nρ(SN+n−1
I ).

This is the set of all unit vectors at a distance at most ρ from the set of the θ -sparse unit vectors. The complementary set
incomp(θ ,ρ) = SN+n−1 \ comp(θ ,ρ) is the set of incompressible vectors.

With these notations, for judiciously chosen θ ,ρ ∈ (0,1), we write

sN+n−1(H) = inf
u∈comp(θ ,ρ)

‖Hu‖ ∧ inf
u∈incomp(θ ,ρ)

‖Hu‖. (5)

The infimum over comp(θ ,ρ) is relatively easier to handle. Given a fixed vector u ∈ SN+n−1, we first show that
P [‖Hu‖ ≤ c] for some c > 0 is exponentially small in n. Recall that an ε-net is a set of points that are separated from
each other by a distance of at most ε . Now, since the vectors of comp(θ ,ρ) are close to being sparse, it has an ε-net of
controlled cardinality for a well-chosen ε > 0. Using this, along with a simple union bound, we will be able to infer the
smallness of the probability that infu∈comp(θ ,ρ) ‖Hu‖ is small.

The infimum over the set of incompressible vectors poses a much bigger challenge since the ε-net argument fails. In
this case the argument is more geometric. Observe that when u is incompressible, Hu is close to a sum of O(n) columns
of H with comparable weights. This helps to reduce the problem of controlling infu∈incomp(θ ,ρ) ‖Hu‖ to the problem of
controlling the distance between an arbitrary column of H and the subspace generated by the other columns.

Let h0 be the first column of H, and let H−0 ∈ C(N+n)×(N+n−1) be the supmatrix left after extracting this column.
Partition H accordingly as

H =

(
b g01

g10 G

)
,

with b ∈ C and G ∈ C(N+n−1)×(N+n−1). In Lemma 11 below, we show that G−1 exists w.p. 1. Noting that the distance
dist(h0,H−0) between h0 and the column span of H−0 satisfies dist(h0,H−0)

2 = h∗0(I −H−0(H∗−0H−0)
−1H∗−0)h0, and

making use of the Sherman-Morrison-Woodbury formula [16, Chap. 2], we get after a small derivation that

dist(h0,H−0) =

∣∣b−g01G−1g10
∣∣√

1+‖g01G−1‖2
. (6)

Our purpose is to bound the probability that this distance is small. If we write

A−1 =

(
b b01

b10 B

)
, X =

(
x W

)
,

where B ∈ C(n−1)×(n−1), and x ∈ CN is the first column of X , then

g01 =
(
b01 x∗

)
, g10 =

(
b10
x

)
, and G =

(
B W ∗

W zIN

)
. (7)
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Assuming that the inverse exists, partition G−1 as

G−1 =

(
E F
P R

)
, E ∈ C(n−1)×(n−1), R ∈ CN×N . (8)

Then using Equation (6), we have

dist(h0,H−0) =
Num
Den

w.p. 1, where, (9)

Num = |b−b01Eb10− x∗Pb10−b01Fx− x∗Rx| , and

Den =
(
1+‖b01E + x∗P‖2 +‖b01F + x∗R‖2)1/2

.
(10)

To control the behavior of Num, we need an anti-concentration result. Loosely speaking, we show that conditionally
on the matrix W and for most of these matrices, the probability that a properly normalized version of the random variable
x∗Pb10 +b01Fx+ x∗Rx lives in an arbitrary ball of C of small radius is itself small.

Small ball probabilities are captured by the so-called Lévy’s concentration function. Given a constant vector a ∈ Cn

and a random vector Z ∈ Cn, Lévy’s concentration function of the inner product 〈a,Z〉 at ε > 0 is

LZ(〈a,Z〉,ε) = sup
w∈C

PZ [|〈a,Z〉−w| ≤ ε] .

When the elements of Z are i.i.d. random variables with finite third moment, the behavior of LZ can be controlled by the
Berry-Esséen theorem, whose use in random matrix theory dates back to [27]. Berry-Esséen theorem is a refinement of
the Central Limit Theorem and implies that when a ∈ Sn−1 has O(n) elements with magnitudes of order 1/

√
n, it holds

that LZ(〈a,Z〉,ε). ε +1/
√

n.
Our plan now is to apply this theorem after replacing Z with the random vector x. Unfortunately, this theorem cannot

be used as is on the random variable x∗Pb10 + b01Fx+ x∗Rx because of the presence of the quadratic form x∗Rx. To
circumvent this problem, we use a decoupling argument that replaces x∗Pb10 + b01Fx+ x∗Rx with an inner product that
can be processed by the Berry-Esséen theorem. This decoupling idea that dates back to [17] has also been used in [38].

3.2 Technical results
The following proposition is an easy variation of [35, Proposition 5.1], see also [7, Lemma A2] and [19].

Proposition 3 (Distance of a random vector to a constant subspace). Let Z = (Z0, . . . ,Zn−1) ∈Cn be a vector of i.i.d. cen-
tered unit-variance random variables such that for some κ > 0, E|Z0|2+κ ≤ Cκ < ∞. Then, there exist c,c′ > 0 and
δ ∈ (0,1) that depend only on κ and Cκ and that satisfy the following property. For all n� 1, and for any deterministic
subspace V of Cn such that 0≤ dim(V )≤ δn,

P[dist(Z,V )≤ c
√

n]≤ exp(−c′n).

This result leads to the following lemma:

Lemma 4. Let the matrix X satisfy Assumption 1. Then, there exist constants c,c′ > 0 and a constant δ ∈ (0,1) that
depend on m4 only and that satisfy the following property. For each deterministic vector u ∈ Sn−1 and each deterministic
subspace V ⊂ CN with 0≤ dim(V )≤ δN,

P [dist(Xu,V )≤ c] ≤ exp(−c′n). (11)

In particular, for each deterministic vector a ∈ CN , it holds that P [‖Xu−a‖ ≤ c] ≤ exp(−c′n). Similar conclusions hold
if X is replaced with X∗.

Proof. Let x̃0, . . . , x̃N−1 ∈ C1×n be the rows of X , and define the random variables Zk =
√

nx̃ku for k ∈ [n]. These ran-
dom variables are i.i.d., centered, and have unit-variance. Furthermore, writing u = (u0, . . . ,un−1)

T, we get by Rosenthal’s
inequality that for some universal constant C,

E|Z1|4 ≤C
(
(n2E|X11|4 ∑ |ui|4) ∨ 1

)
≤Cm4.

Writing Z = (Z0, . . . ,ZN−1)
T, we note that dist(Xu,V ) = dist(Z,V )/

√
n. Applying Proposition 3 with κ = 2, we obtain

(11). The rest of the claims follow immediately. �
The two following results regarding Lévy’s concentration functions will be needed.

Lemma 5 ( Lemma 2.1 of [33]). Let Z ∈ Cn be a vector of independent random variables. Then, for each non-empty
I ⊂ [n], we have LZ(〈a,Z〉,ε)≤LZI

(〈aI ,ZI 〉,ε).
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Proposition 6. There exists a constant c > 0 such that for any vector Z = (Z0, . . . ,Zn−1) of complex centered independent
random variables with finite third moments,

LZ

(
∑Zi, t

)
≤ ct√

∑E|Zi|2
+

c∑E|Zi|3

(∑E|Zi|2)3/2 .

For a proof, see [7, Lemma A6]. In particular, if there exist two positive constants c2 and c3 such that E|Zi|2 ≥ c2 and
E|Zi|3 ≤ c3 for each i ∈ [n], then

LZ

(
∑Zi, t

√
n
)
≤ c′t +

c′′√
n
, (12)

where c′ = c/
√

c2 and c′′ = cc3/c3/2
2 .

We now enter the proof of Theorem 1 via proving Inequality (4). Recall that we have written X =
(
x W

)
where x is

the first column of X . Given C > 0, we denote as Eop(C) the probability event

Eop(C) = [‖W‖ ≤C] .

In the remainder of this section, the constants that do not depend on n will be referred to by the letter c, possibly with
primes or numerical indices referring to the propositions or lemmas where these constants appear for the first time. In all
statements of the type P [[· · · ≤ c] ∩E ]≤ exp(−c′n)+c1n−γ , where E = [‖X‖ ≤C] or Eop(C), the constants such as c, c′,
or c1 depend on C, z, and m4 at most.

3.3 Compressible vectors
Recalling (5), we start with the compressible vectors.

Proposition 7. Let Assumption 1 hold true. Then, there exists θ7 ∈ (0,1), ρ7 > 0, c > 0 and c′ > 0 such that

P
[[

inf
u∈comp(θ7,ρ7)

‖Hu‖ ≤ c
]
∩ [‖X‖ ≤C]

]
≤ exp(−c′n) for large enough n.

Proof. We first show that there exist c0,c1 > 0 such that for each deterministic vector u ∈ SN+n−1,

P [‖Hu‖ ≤ c0]≤ exp(−c1n). (13)

Write u = (vT,wT)T, where v ∈ Cn and w ∈ CN . Since ‖u‖ = 1, either ‖v‖ ≥ 1/
√

2 or ‖w‖ ≥ 1/
√

2. Assume that
‖w‖ ≥ 1/

√
2, and note that [‖Hu‖ ≤ c0]⊂ [‖A−1v+X∗w‖ ≤ c0]. Writing w̃ = w/‖w‖, we have

P
[
‖X∗w+A−1v‖ ≤ c0

]
= P

[
‖X∗w̃+A−1v/‖w‖‖ ≤ c0/‖w‖

]
≤ P

[
‖X∗w̃+A−1v/‖w‖‖ ≤ c0

√
2
]
≤ exp(−c1n)

by applying Lemma 4 and choosing c0 and c1 judiciously. When ‖v‖ ≥ 1/
√

2, we can use a similar argument (with
possibly different c0and c1) after observing that [‖Hu‖ ≤ c0]⊂ [‖Xv+ zw‖ ≤ c0]. This establishes (13).

Now, on the event [‖X‖ ≤C], we have

‖H‖ ≤
∥∥∥∥( X∗

X

)∥∥∥∥+∥∥∥∥(A−1

z

)∥∥∥∥≤CH ,C+ |z|∨ ssup.

On this event, assume that there exists y∈Nc0/(2CH )({u}) such that ‖Hy‖≤ c0/2. Then ‖Hu‖≤ ‖H(u−y)‖+‖Hy‖≤ c0.
In other words, [

∃y ∈Nc0/(2CH )({u}) : ‖Hy‖ ≤ c0/2
]
∩ [‖X‖ ≤C]⊂ [‖Hu‖ ≤ c0] .

We now use a ε-net argument. Let θ7 ∈ (0,1) to be fixed in a moment, and choose I ⊂ [N + n] so that that |I | =
bθ7(n+N)c. The unit-sphere SN+n−1

I of the subspace of the vectors of CN+n that are supported by I has a (c0/(2CH))-
net of cardinality bounded by (6CH/c0)

2|I | (see, e.g., [10, Lemma 2.2]). Applying the previous results and making use
of the union bound, we get that

P
[[
∃y ∈Nc0/(2CH )(SN+n−1

I ) : ‖Hy‖ ≤ c0/2
]
∩ [‖X‖ ≤C]

]
≤ (6CH/c0)

2θ7(N+n) exp(−c1n).

Finally, considering all the sets I ⊂ [N+n] such that |I |= bθ7(N+n)c, recalling the elementary bound on the binomial
coefficients

(m
k

)
≤ (em/k)k, and using the union bound, we get that

P [[∃y ∈ comp(θ7,c0/(2CH)) : ‖Hy‖ ≤ c0/2]∩ [‖X‖ ≤C]]≤
(

36eC2
H

θ7c2
0

)θ7(N+n)

exp(−c1n).

A small calculation shows that the right hand side is of the form exp(−c′n) for large enough n when θ7 is chosen small
enough. By taking ρ7 = c0/(2CH), the proposition is proven. �
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3.4 Incompressible vectors
One main feature of incompressible vectors of Cn is that they contain O(n) elements of absolute values of order O(n−1/2),
as shown in [33, Lemma 3.4]. We shall need the following slightly stronger version of this lemma with a similar proof.

Lemma 8. Let u = (u0, . . . ,un−1)
T ∈ incomp(θ ,ρ), and let ũ = (ũ0, . . . , ũn−1)

T ∈ Sn−1. Then, |J| ≥ θn/2 where,

J = {i ∈ [n] :
ρ√
n
≤ |ui| ≤

2√
θn

and |ũi| ≤
2√
θn
}.

One consequence of [33, Lemma 3.4] is the following lemma, which implies that the infimum of ‖Hu‖ over a set of
incompressible vectors can be handled by controlling the distance between an arbitrary column of H and the subspace
generated by the other columns:

Lemma 9 (Invertibility via mean distance, Lemma 3.5 of [33]). Let M ∈ Cn×n be a random matrix. Let mk be the kth
column of M and let M−k ∈ Cn×(n−1) be the supmatrix left after removing this column. Then,

P
[

inf
u∈incomp(θ ,ρ)

‖Mu‖ ≤ ρt√
n

]
≤ 2

θn

n−1

∑
k=0

P [dist(mk,M−k)≤ t] .

Using Lemma 9, we need to control the distance between a column of H and the subspace generated by the other
columns. Denote as xk the kth column of X (thus, x0 = x). Let bk and x̃` denote the kth column of A−1 and the `th row of X

respectively. Then the columns of H are one of the two types:
(

bk
xk

)
, or
(

x̃∗`
zeN,`

)
. Due to the fact that A is not necessarily

a diagonal matrix, it will be more difficult to control the distances involving columns of the first type.
Recall the partition H =

(
h0 H−0

)
, where h0 is the first column of H. We have

Proposition 10. Let Assumptions 1, 2, and 3 hold true. Then

P[[dist(h0,H−0)≤ t]∩ [‖X‖ ≤C]]≤ c1(n59/88t1/2 +n−1/22)+ exp(−c2n).

Since [‖X‖ ≤C] is obviously included in Eop(C), it will be enough to establish the inequality

P[[dist(h0,H−0)≤ t]∩Eop(C)]≤ c1(n59/88t1/2 +n−1/22)+ exp(−c2n)

to obtain Proposition 10. Replacing [‖X‖ ≤ C] with Eop(C) will be more convenient due to the independence of x and
Eop(C). The remainder of this section is devoted towards proving this inequality. Our starting point will be Equation (6).
To be able to use it, we need to check that G defined in (7) is invertible. Recall that X is assumed to have a density.

Lemma 11. The matrix G is invertible with probability one.

Proof. Since z 6= 0, the matrix zIN is invertible. Thus, to show that G is invertible with the probability one, we need to
show that the Schur complement ∆ = B− z−1W ∗W of zIN in G is invertible with probability one.

Since A−1 =

(
b b01

b10 B

)
, it follows that rank(B)≥ n−2. Thus, either B is invertible or rank(B) = n−2.

Assume it is invertible. Then on the set {W ∈CN×(n−1) : ‖z−1W ∗W‖≤ sn−2(B)/2}, it holds that sn−2(∆)≥ sn−2(B)−
‖z−1W ∗W‖ ≥ sn−2(B)/2 > 0. Thus, det(∆) is a non-zero multivariate polynomial in the real and imaginary parts of the
elements of W . Since W has a density, det(∆) 6= 0 w.p. 1.

Assume now that rank(B) = n− 2. Then we can write B = UV ∗ where U,V ∈ C(n−1)×(n−2) are full column-rank
matrices. Writing W ∗ =

(
w Y

)
where w ∈ Cn−1, we get that

B− z−1W ∗W =
(
U z−1w

)(
V −w

)∗− z−1YY ∗ = D− z−1YY ∗.

Given a vector u ⊥ span(U) where ⊥ denotes the orthogonality, the inner product u∗w is a continuous random variable,
thus u∗w 6= 0 w.p. 1. Consequently, w 6∈ span(U) w.p. 1., which implies that

(
U z−1w

)
is invertible w.p. 1. The same

argument holds for
(
V −w

)
, and thus the matrix D is invertible w.p. 1. To obtain that ∆ is invertible, it remains to apply

the previous argument after replacing B with D and W ∗ with Y , and making use of the independence of w and Y along
with the Fubini-Tonelli theorem. �

From Equation (6), dist(h0,H−0) = Num/Den w.p. 1, where Num and Den are as given in (10). To study the behavior
of these random variables, we first need to show that the image of each deterministic vector by the matrix R at the right
hand side of (8) is incompressible with high probability. This will be stated in the corollary of Proposition 13 below.

Lemma 12. sn−3(B)≥ sinf.

Proof. The matrix b10b∗10 +BB∗ is a principal supmatrix of the Hermitian matrix A−1(A−1)∗. Using the variational
representation of the eigenvalues of A−1(A−1)∗, we get that sn−2(b10b∗10 +BB∗)≥ s2

inf. By Weyl’s interlacing inequalities
[23, Chap. 4], sn−3(BB∗)≥ sn−2(b10b∗10 +BB∗), hence the result. �

8



Proposition 13. There exist θ13 ∈ (0,1), ρ13 > 0, and c13 > 0 such that for each d ∈ CN ,

P
[[

inf
v∈Cn−1,

w∈comp(θ13,ρ13)

dist
(

G
(

v
w

)
,span

((
0
d

)))
≤ ρ13

]
∩Eop(C)

]
≤ exp(−c13n).

Proof. Let θ13 ∈ (0,1) and t ∈ (0,1) to be fixed later. Let I ∈ [N]such that |I | = bθ13Nc. Fix an element w of the
unit-sphere SN−1

I . In this first part of the proof, we shall control the probability of the event[
inf

v∈Cn−1
dist
(

G
(

v
w

)
,span

((
0
d

)))
≤ t
]
∩Eop(C). (14)

Given two elements a and b of some vector space on C, it holds that dist(a,spanb) = infα∈C ‖a−αb‖. Thus, the event
between [ ] brackets in (14) is included in the event

Ew(t) =
[
∃v ∈ Cn−1,∃α ∈ C : ‖Bv+W ∗w‖ ≤ t, ‖Wv+ zw+αd‖ ≤ t

]
. (15)

Let

B =
(
P p

)(Σ 0
0 sn−2(B)

)(
Q∗

q∗

)
(16)

be a singular value decomposition of B, where p and q are respectively the last columns of the unitary matrices
(
P p

)
and

(
Q q

)
. Given any vector y ∈Cn−1, we shall use in the remainder of the proof the notations yQ = ΠQy and yq = Πqy,

making y = yQ +yq an orthogonal sum. As is well-known [16, Chap. 5], the vector u =−B†W ∗w where B† is the Moore-
Penrose pseudo-inverse of B, minimizes ‖By+W ∗w‖ with respect to y. Assume that there is a solution v ∈ Cn−1 of the
inequality ‖By+W ∗w‖ ≤ t in y. Then, since u is also a solution, we get that ‖B(uQ− vQ)+B(uq− vq)+Bv+W ∗w‖ ≤ t,
and hence, ‖B(uQ− vQ)+B(uq− vq)‖ ≤ ‖Bv+W ∗w‖+ t ≤ 2t. Noting that B(uQ− vQ) and B(uq− vq) are orthogonal,
we get that ‖B(uQ− vQ)‖ ≤ 2t. By Lemma 12, the smallest singular value of the operator B restricted to the subspace
span(Q) is bounded below by sinf. Hence

‖vQ−uQ‖ ≤
2t
sinf

.

The vector v also satisfies the inequality ‖Wv+ zw+αd‖ ≤ t for some α ∈ C. Thus, ‖W (vQ−uQ)+Wvq +WuQ + zw+
αd‖ ≤ t, which implies that on the event Eop(C),

‖Wvq +WuQ + zw+αd‖ ≤ ‖W (vQ−uQ)‖+ t ≤
(

1+
2C
sinf

)
t.

Observing that vq is collinear with q, we get at this stage of the proof that

Ew(t)∩Eop(C)⊂
[
∃α,β ∈ C, : ‖βWq+WuQ + zw+αd‖ ≤

(
1+

2C
sinf

)
t
]
∩Eop(C). (17)

To proceed, we need to control the Euclidean norm of uQ. For m,M > 0, consider the event

EuQ(m,M) = [m≤ ‖uQ‖ ≤M] .

Since uQ =−ΠQB†W ∗w, we get from Lemma 12 that s−1
sup‖W ∗w‖ ≤ ‖uQ‖ ≤ s−1

inf ‖W
∗w‖. By Lemma 4, there exist c0 > 0

and c1 > 0 such that P[‖W ∗w‖ ≤ c0]≤ exp(−c1n). We thus obtain

P
[
EuQ(s

−1
supc0,s−1

inf C)c∩Eop(C)
]
≤ exp(−c1n). (18)

To bound the probability of the event at the right hand side of the inclusion (17), we consider separately the situations
where |β | is large and where |β |is bounded above. Consider the event

E|β |>(m,M) = [∃α,β ∈ C : ‖βWq+WuQ + zw+αd‖ ≤ m, |β | ≥M] .

On EuQ(s
−1
supc0,s−1

inf C)∩Eop(C), it holds that

‖βWq+WuQ + zw+αd‖ ≥ ‖βWq+ zw+αd‖− s−1
inf C2 ≥ |β |dist(Wq,span[w,d])− s−1

inf C2

From Lemma 4, there exist c2,c3 > 0 such that P[dist(Wq,span[w,d])≤ c2]≤ exp(−c3n). Writing s = (1+2C/sinf)t, we
have

E|β |>(s,M)∩EuQ(s
−1
supc0,s−1

inf C)∩Eop(C)⊂
[
∃β ∈ C : |β |dist(Wq,span[w,d])− s−1

inf C2 ≤ s, |β | ≥M
]

⊂

[
dist(Wq,span[w,d])≤

s+ s−1
inf C2

M

]
.
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Thus, setting C′ = (s+ s−1
inf C2)/c2, we get that

P
[
E|β |>(s,C

′)∩EuQ(s
−1
supc0,s−1

inf C)∩Eop(C)
]
≤ exp(−c3n). (19)

Now consider the case |β |<C′. We discretize this ball as follows. Consider the event

E|β |<(s,C
′) =

[
∃α,β ∈ C : ‖βWq+WuQ + zw+αd‖ ≤ s, |β |<C′

]
.

Given k, ` ∈ Z, define the event

Eq(k, `,s,C) =
[
∃α ∈ C :

∥∥ s
C
√

2
(k+ ı`)Wq+WuQ + zw+αd

∥∥≤ s
]
.

For β ∈ C, let kβ = bC
√

2ℜβ/sc and `β = bC
√

2ℑβ/sc. Then
∣∣∣β − (kβ + ı`β )s/(C

√
2)
∣∣∣≤ s/C. Therefore,

E|β |<(s,C
′)∩Eop(C)⊂

⋃
k,`∈Z,

|k+ı`|≤CC′
√

2/s

Eq(k, `,2s,C).

Let us bound the probability of the event Eq(k, `,2s,C)∩EuQ(s
−1
supc0,s−1

inf C). Recalling that uQ = −ΠQB†W ∗w and that w

is supported by I , we observe that uQ and WI c,· are independent. Writing r = s(k+ı`)
C
√

2
q+uQ and r̃ = r/‖r‖, we have

Eq(k, `,2s,C)∩EuQ(s
−1
supc0,s−1

inf C)⊂ [∃α ∈ C, : ‖Wr+ zw+αd‖ ≤ 2s]∩
[
‖uQ‖ ≥ s−1

supc0
]

⊂
[
∃α ∈ C, : ‖WI c,·r+αdI c‖ ≤ 2s

]
∩
[
‖uQ‖ ≥ s−1

supc0
]
⊂
[
‖r‖dist

(
WI c,·r̃, spandI c

)
≤ 2s

]
∩
[
‖uQ‖ ≥ s−1

supc0
]

⊂
[
dist
(
WI c,·r̃, spandI c

)
≤ 2sssup/c0

]
.

By Lemma 4 once again, P[dist
(
WI c,·r̃, spandI c

)
≤ c2] ≤ exp(−c3|I c|). Thus, if we choose t small enough so that(

2+4 C
sinf

)
ssup
c0

t ≤ c2, we get that

P
[
Eq(k, `,2s,C)∩EuQ(s

−1
supc0,s−1

inf C)
]
≤ exp(−(1−θ13)c3n). (20)

Putting things together, we get

P
[[

inf
v∈Cn−1

dist
(

G
(

v
w

)
,span

((
0
d

)))
≤ t
]
∩Eop(C)

]
≤ P

[
Ew(t)∩Eop(C)

]
(using (15))

≤ P
[
Ew(t)∩EuQ(s

−1
supc0,s−1

inf C)∩Eop(C)
]
+P

[
EuQ(s

−1
supc0,s−1

inf C)c∩Eop(C)
]

≤ P
[
E|β |>(s,C

′)∩EuQ(s
−1
supc0,s−1

inf C)∩Eop(C)
]

+P
[
E|β |<(s,C

′)∩EuQ(s
−1
supc0,s−1

inf C)∩Eop(C)
]
+ exp(−c1n) (using (18))

≤ exp(−c3n)+ ∑
|k+ı`|≤CC′

√
2/s

P
[
Eq(k, `,2s,C)∩EuQ(s

−1
supc0,s−1

inf C)
]
+ exp(−c1n) (using (19))

≤ exp(−c1n)+C′′ exp(−(1−θ13)c3n) (using (20)),

where C′′ =C′′(m4,C)> 0.
Now, let Σt be a t-net of (SN−1

I ). Given an element y of Nt(SN−1
I )∩SN−1, there exists y′ ∈ SN−1

I such that ‖y−y′‖ ≤ t,
and there exists w ∈ Σt such that ‖w− y′‖ ≤ t. Thus, ‖y−w‖ ≤ 2t by the triangle inequality. Assume that there exist
α ∈ C and v ∈ Cn−1 such that the inequality ∥∥∥∥G

(
v
y

)
+α

(
0
d

)∥∥∥∥≤ t

holds true. Then on the set Eop(C), we have∥∥∥∥G
(

v
w

)
+α

(
0
d

)∥∥∥∥= ∥∥∥∥G
((

v
w

)
−
(

v
y

))
+G

(
v
y

)
+α

(
0
d

)∥∥∥∥≤ 2(C+ |z|)t + t.

Observe that |Σt | ≤ (3/t)2|I |. Adjusting t again in such a way that
(

2C+2|z|+1)(2+4 C
sinf

)
ssup
c0

t ≤ c2, we obtain that

P
[[

inf
v∈Cn−1,

y∈Nt (SN−1
I )∩SN−1

dist
(

G
(

v
y

)
,span

((
0
d

)))
≤ t
]
∩Eop(C)

]
≤ (3/t)2θ13n (exp(−c1n)+C′′ exp(−(1−θ13)c3n)

)
.
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Finally, considering all the sets I ⊂ [N] such that |I | = bθ13Nc, and using the bound
(m

k

)
≤ (em/k)k along with the

union bound, we get that

P
[[

inf
v∈Cn−1,

w∈comp(θ13,t)

dist
(

G
(

v
w

)
,span

((
0
d

)))
≤ t
]
∩Eop(C)

]
≤ (e/θ13)

θ13N (3/t)2θ13n (exp(−c1n)+C′′ exp(−(1−θ13)c3n)
)
.

Choosing θ13 small enough, we get the result with ρ13 = t and c13 small enough. �

Corollary 14. For each deterministic vector d ∈ CN \{0},

P
[
[Rd/‖Rd‖ ∈ comp(θ13,ρ13)]∩Eop(C)

]
≤ exp(−c13n).

Proof. Write
(

u
y

)
= G−1

(
0
d

)
=

(
Fd
Rd

)
with y ∈ CN , and let ỹ = y/‖y‖, which can be shown to be defined w.p. 1

as in the proof of Lemma 11. Considering the event Eỹ = [ỹ defined, ỹ∈ comp(θ13,ρ13)], our purpose is to show that P[Eỹ∩

Eop(C)]≤ exp(−c13n). Since G
(

u/‖y‖
ỹ

)
= ‖y‖−1

(
0
d

)
, it holds that Eỹ⊂

[
inf v∈Cn−1,

w∈comp(θ13,ρ13)

dist
(

G
(

v
w

)
,span

((
0
d

)))
≤

ρ13

]
, and the result follows from Proposition 13. �

We now get back to the expression (9) of dist(h0,H−0), handling the denominator Den given by (10).

Lemma 15. For M = F , P, or E, there exist positive constants c15 and C15 such that

P
[
[‖M‖ ≥C15‖R‖]∩Eop(C)

]
≤ exp(−c15n).

Proof. We reuse the notations of the singular value decomposition (16) of B. For any matrix M with n−1 rows, we
also write MQ = ΠQM and Mq = ΠqM. We first consider M = F .

From Lemma 4, we know that there exist c0,c > 0 such that P[‖Wq‖ ≤ c0] ≤ exp(−cn). We shall show that on the
event [‖Wq‖ ≥ c0]∩Eop(C), there exists some C1 > 0, such that ∀u ∈ SN−1, ‖Fu‖ ≤C1(1+ ‖Ru‖). This will establish
that

P
[
[‖F‖ ≥C1(1+‖R‖)]∩Eop(C)

]
≤ exp(−cn). (21)

Recall that G−1
(

0
u

)
=

(
Fu
Ru

)
=

(
v
w

)
say, or equivalently,

Bv+W ∗w = 0, (22a)
Wv+ zw = u. (22b)

Since Bvq ⊥ BvQ, Lemma 12 and (22a) imply that sinf‖vQ‖ ≤ ‖BvQ‖ ≤ ‖W ∗w‖. Thus, ‖vQ‖ ≤ (C/sinf)‖w‖ on Eop(C).
Writing vq = βq, Equation (22b) can be rewritten as βWq= u−zw−WvQ, which gives that |β | ≤ (1+(|z|+C2/sinf)‖w‖)/c0
on [‖Wq‖ ≥ c0]∩Eop(C). Since ‖v‖2 = |β |2 +‖vQ‖2, there exists C1 > 0 such that ‖v‖ ≤C1(1+‖w‖), and the inequal-
ity (21) follows.

Our next step is to show that there exists a constant C2 such that Eop(C) ⊂ [‖R‖ ≥ C2]. It is then easy to deduce
from (21) that P

[
[‖F‖ ≥C′‖R‖]∩Eop(C)

]
≤ exp(−cn) with C′ =C1(C−1

2 +1). We shall assume that ‖R‖<C2 on Eop(C)

and obtain a contradiction if C2 is chosen small enough. From the equation GG−1 = IN+n−1, we have

BF +W ∗R = 0, (23a)
WF + zR = I. (23b)

By Equation (23a), ‖BF‖ ≤ CC2 on Eop(C). Writing BF = BFQ +BFq and observing from (16) that span(BFQ) and
span(BFq) are orthogonal, we obtain that ‖BFQ‖ ≤ ‖BFQ +BFq‖ ≤CC2. Turning to (16) again and using Lemma 12, we
also have

‖BFQ‖2 = ‖F∗QΣ
2Q∗F‖ ≥ s2

inf‖F∗QQ∗F‖= s2
inf‖FQ‖2,

thus, ‖FQ‖ ≤CC2/sinf. Now, rewriting Equation (23b) as WFq− I =−zR−WFQ and using the triangle inequality, we get
that ‖WFq− I‖ ≤ |z|‖R‖+‖WFQ‖ ≤ (|z|+C2/sinf)C2. Since WFq is a rank-one matrix, the set of vectors u ∈ SN−1 such
that WFqu = 0 is not empty. For any such vectors, we have

(|z|+C2/sinf)C2 ≥ ‖WFq− I‖ ≥ ‖(WFq− I)u‖= 1,

which raises a contradiction if we choose C2 < (|z|+C2/sinf)
−1. The lemma is proven for M = F .

The case M = P can be shown similarly. To handle the case M = E, we first show an analogue of (21) where (F,R) is
replaced with (E,F), and then we combine the obtained inequality with (21) to get that

P
[
[‖E‖ ≥C1(1+‖R‖)]∩Eop(C)

]
≤ exp(−cn)
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with possibly different constants. The rest of the proof is unchanged. �
The following lemma is very close to [38, Proposition 8.2], with the difference that the bound on the probability in

Statement (iii) is a Berry-Esséen type bound.

Lemma 16. The following hold true:

(i) There exist c16,C16 > 0 such that

P[[‖g01G−1‖ ≤C16]∩Eop(C)]≤ exp(−c16n).

(ii) Let y = (y0, . . . ,yN−1)
T ∈CN be a random vector with independent elements such that Eyi = 0 and E|yi|2 = 1/n for

all i ∈ [N], and let M ∈ CN×N be deterministic. Then for each η > 0,

P
[
‖y∗M‖ ≤ 1

√
η

‖M‖HS√
n

]
≥ 1−η .

(iii) There exists c > 0 such that for each ε ≥ 0,

P
[[
‖x∗R‖ ≤ ε

‖R‖HS√
n

]
∩Eop(C)

]
≤ cε +

c√
n
.

The following result is needed to prove this lemma:

Lemma 17 (Lemma 8.3 of [38]). Let Z0, . . . ,ZN−1 be arbitrary non-negative random variables, and let p0, . . . , pN−1 be
non-negative numbers such that ∑ pk = 1. Then, P[∑ pkZk ≤ t]≤ 2∑ pkP[Zk ≤ 2t] for each t ≥ 0.

Proof of Lemma 16. To prove the first statement, we write ‖g01‖ = ‖g01G−1G‖ ≤ ‖g01G−1‖‖G‖. By Lemma 4,
there exist two constants c,c16 > 0 such that ‖g01‖ ≥ ‖x‖ ≥ c with a probability larger than 1− exp(−c16n). Moreover,
‖G‖ ≤ (C+ |z|∨ ssup) on Eop(C), hence the result.

We have E‖y∗M‖2 = Ey∗MM∗y = ‖M‖2
HS/n, thus, P[‖y∗M‖ ≥ ‖M‖HS/

√
ηn] ≤ η by Markov’s inequality. This

proves Statement (ii).
Turning to the third statement, we start by writing

‖x∗R‖2 = ∑
k∈[N]

|〈R∗x,eN,k〉|2 = ∑
k∈[N]

|〈x,ReN,k〉|2 = ∑
k∈[N]

‖ReN,k‖2|〈x,
ReN,k

‖ReN,k‖
〉|2. (24)

Define uk = ReN,k/‖ReN,k‖ = (u0,k, . . . ,uN−1,k)
T. The idea of the proof is the following. By Corollary 14, uk is incom-

pressible with high probability. Moreover, x and uk are independent. Therefore, we can use the Berry-Esséen theorem
(Proposition 6) to control the behavior of the inner products 〈x,uk〉. We now apply Lemma 17. Specifically, define for
each k ∈ [N] the set of indices

Ik =

{
i ∈ [N] :

ρ13√
N
≤ |ui,k| ≤

2√
θ13N

}
.

After a small calculation using the independence of x and uk, Lemma 5 and Proposition 6,

Px

[
|〈x,uk〉| ≤ ε

√
2/n
]
≤Lx

(
∑

i∈Ik

x̄i,0ui,k,ε
√

2/n
)
≤Vk ∧1,

where

Vk =
cε
√

2

ρ13
√
|Ik|N−1

+
8cm3/4

4

θ
3/2
13 ρ3

13

1√
|Ik|

,

and c > 0 is the constant that appears in the statement of Proposition 6. Observing that ∑k∈[N] ‖ReN,k‖2 = ‖R‖2
HS and

using Lemma 17, we get that

Px

[
∑

k∈[N]

‖ReN,k‖2

‖R‖2
HS
|〈x,uk〉|2 ≤

ε2

n

]
≤ 2 ∑

k∈[N]

‖ReN,k‖2

‖R‖2
HS

(Vk ∧1).

Defining the event Eincomp = ∩k∈[N][uk ∈ incomp(θ13,ρ13)], we know from Corollary 14 that P[E c
incomp ∩ Eop(C)] ≤

N exp(−c13n). Moreover, |Ik| ≥ θ13N/2 on Eincomp for each k ∈ [N] by Lemma 8. Thus, by changing the value of
the constant c above we get that Vk ≤ cε + c/

√
n on Eincomp for each k ∈ [N]. Putting things together, we conclude that

P
[[
‖x∗R‖ ≤ ε

‖R‖HS√
n

]
∩Eop(C)

]
= EW

[
Px

[
∑

k∈[N]

‖ReN,k‖2

‖R‖2
HS
|〈x,uk〉|2 ≤

ε2

n

]
1Eop(C)

]
≤ 2EW

[
∑

k∈[N]

‖ReN,k‖2

‖R‖2
HS

(Vk ∧1)1Eincomp

]
+2EW [1E c

incomp
1Eop(C)]≤ 2cε +2c/

√
n+2N exp(−c13n),

which leads to the required result after changing once again the value of c. �
Lemmas 15 and 16 lead to the following control on the denominator:

12



Lemma 18. There exist positive constants c18 and C18 such that for each η > 0,

P
[[

Den2 ≥C18(1+η
−1)‖R‖2

HS
]
∩Eop(C)

]
≤ 2η + exp(−c18n).

Proof. Starting with the expression Den2 = 1+‖g01G−1‖2, and using Lemma 16–(i), we get that

P
[[

Den2 ≥ (C−2
16 +1)‖g01G−1‖2]∩Eop(C)

]
≤ exp(−c16n). (25)

Since ‖g01G−1‖2 ≤ 2(‖b01E‖2 +‖b01F‖2 +‖x∗P‖2 +‖x∗R‖2), the event

E =
[
‖g01G−1‖2 ≥ 2(‖b01E‖2 +‖b01F‖2 +‖P‖2

HS/(ηn)+‖R‖2
HS/(ηn))

]
is included in the event

E ′ =
[
‖x∗P‖2 ≥ ‖P‖2

HS/(ηn)
]
∪
[
‖x∗R‖2 ≥ ‖R‖2

HS/(ηn)
]
.

Thus, P[E ]≤ P[E ′] = PW ⊗Px[E ′]≤ 2η by Lemma 16–(ii). Furthermore, the event

E ′′ =
[
‖g01G−1‖2 ≥ 4s2

supC2
15‖R‖2 +2C2

15‖R‖2/η +2‖R‖2
HS/(ηn))

]
is included in the event

E ∪ [‖E‖ ≥C15‖R‖]∪ [‖F‖ ≥C15‖R‖]∪ [‖P‖ ≥C15‖R‖] ,
since ‖P‖2

HS/n≤‖P‖2. Thus, P
[
E ′′∩Eop(C)

]
≤ 2η +3exp(−c15n) by Lemma 15. The proof is completed by combining

this inequality with (25) and using the inequality ‖R‖ ≤ ‖R‖HS. �

We now turn to the numerator Num in (10).
We shall use the idea of decoupling that will allow us to replace the term −x∗Pb10− b01Fx− x∗Rx in Num with an

inner product whose concentration function is manageable by means of the Berry-Esséen theorem. This decoupling idea
that dates back to [17] has been used many times in the literature.

Lemma 19 (See in [38]). Let Y and Z be independent random vectors, and let Z′ be an independent copy of Z. Let E (Y,Z)
be an event that depends on Y and Z. Then P[E (Y,Z)]2 ≤ P[E (Y,Z)∩E (Y,Z′)].

Lemma 20. Let a ∈ C, u,v ∈ CN and M ∈ CN×N be deterministic. Let I ⊂ [N]. Then for each t > 0,

P [|x∗Mx+u∗x+ x∗v+a| ≤ t]2 ≤ ExI c ,x′I c
LxI

(
(xI c − x′I c)∗MI c,I xI + x∗I MI ,I c(xI c − x′I c),2t

)
,

where x′ is an independent copy of x (here we assume that the right hand side is equal to one if I = /0 or [N]).

Proof. Assume without loss of generality that I = [|I |]. Write

x =
(

xI

xI c

)
, and x̃ =

(
xI

x′I c

)
.

Using Lemma 19 with Y = xI , Z = xI c , and Z′ = x′I c , we get

P [|x∗Mx+u∗x+ x∗v+a| ≤ t]2 ≤ PxI ,xI c ,x′I c
[|x∗Mx+u∗x+ x∗v+a| ≤ t, |x̃∗Mx̃+u∗x̃+ x̃∗v+a| ≤ t]

≤ PxI ,xI c ,x′I c
[|x∗Mx− x̃∗Mx̃+u∗(x− x̃)+(x− x̃)∗v| ≤ 2t] ,

where the second inequality is due to the triangle inequality. Developing, we get that

PxI ,xI c ,x′I c
[|x∗Mx− x̃∗Mx̃+u∗(x− x̃)+(x− x̃)∗v| ≤ 2t]

= PxI ,xI c ,x′I c

[∣∣(xI c − x′I c)∗MI c,I xI + x∗I MI ,I c(xI c − x′I c)

+u∗I c(xI c − x′I c)+(xI c − x′I c)∗vI c + x∗I cMI c,I cxI c − (x′I c)∗MI c,I cx′I c
∣∣≤ 2t

]
≤ ExI c ,x′I c

LxI

(
(xI c − x′I c)∗MI c,I xI + x∗I MI ,I c(xI c − x′I c),2t

)
.

�
We now have all the ingredients to prove Proposition 10.

Proof of Proposition 10. In the remainder, we write

EDen(η) = [Den≤Cη‖R‖HS] ,

where Cη =C1/2
18 (1+η−1)1/2. Given t > 0, we have

P
[
[dist(h0,H−0)≤ t]∩Eop(C)

]2
= P[[Num≤ tDen]∩Eop(C)]2

≤ 2P
[
[Num≤ tDen]∩EDen(η)∩Eop(C)

]2
+2P[EDen(η)c∩Eop(C)]2,
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and

P
[
[Num≤ tDen]∩EDen(η)∩Eop(C)

]2 ≤ P
[
[Num/‖R‖HS ≤ tCη ]∩Eop(C)

]2
= EW

[
Ex[1[Num/‖R‖HS≤tCη ]]1Eop(C)

]2
≤ EW

[
(Ex1[Num/‖R‖HS≤tCη ])

2
1Eop(C)

]
.

Given an arbitrary I ⊂ [n], we denote as u ∈ C|I |, v ∈ C|I c|, and w ∈ C|I c| three independent vectors, independent

of everything else, such that u L
= xI and v,w L

= xI c . Recalling the expression of Num in (10) and using Lemma 20, we
get that for each s > 0,

Px[Num≤ s]2≤Ev,wLu
(
(v−w)∗RI c,I u+u∗RI ,I c(v−w),2s

)
=Ev,wLu ((v−w)∗P∗I cRPI u+u∗P∗I RPI c(v−w),2s) ,

(26)
where PI the C|I |→CN linear mapping such that if I = {i1 < · · ·< i|I |}, then PI u = (0, . . . ,0,u1,0, . . . ,0,u|I |,0, . . .),
where u j is at the position i j.

Let ξ = (ξ0, . . . ,ξN−1) be a vector of N i.i.d. Bernoulli random variables valued in {0,1} such that P[ξ0 = 1] = p,
where the probability pwill be fixed below. This vector is assumed to be independent of everything else. Since (26) is true
for each I ⊂ [N], we can randomize I by setting I = {i ∈ [n] : ξi = 1}. Setting s = ‖R‖HSCη t, we obtain

(Ex1[Num/‖R‖HS≤tCη ])
2 ≤ EξEv,wLu

(
(v−w)∗P∗I c R
‖R‖HS

PI u+u∗P∗I
RPI c(v−w)
‖R‖HS

,2Cη t
)

= Eξ ,x,x′Lu

(
(x− x′)∗ΠI cR
‖R‖HS

PI u+u∗P∗I
RΠI c(x− x′)
‖R‖HS

,2Cη t
)
. (27)

where x′ is a vector that has the same law as x and is independent of all other random variables.
Write

y =
RΠI c(x− x′)
‖RΠI c(x− x′)‖

=

 y0
...

yN−1

 , ỹ∗ =
(x− x′)∗ΠI c R
‖(x− x′)∗ΠI c R‖

=
(
ỹ0, . . . , ỹN−1

)
,

and let

α =

√
n‖RΠI c(x− x′)‖√

2(1− p)‖R‖HS
, α̃ =

√
n‖(x− x′)∗ΠI cR‖√

2(1− p)‖R‖HS
.

For i ∈I , let
Zi = α̃ ỹi[PI u]i +α[PI u]iyi.

Then the concentration function Lu at the right hand side of (27) can be rewritten as

Lu

(
α̃ ỹ∗PI u+αu∗P∗I y,

√
2/(1− p)Cη t

√
n
)
= Lu

(
∑

i∈I
Zi,
√

2/(1− p)Cη t
√

n
)
.

We wish to control this by using the Berry-Esséen theorem (Proposition 6). Recalling Proposition 13, define the set

J =

{
i ∈ [N] :

ρ13√
N
≤ |yi| ≤

2√
θ13N

, |ỹi| ≤
2√

θ13N

}
.

By the restriction lemma 5, we have

Lu

(
∑

i∈I
Zi,
√

2/(1− p)Cη t
√

n
)
≤Lu

(
∑

i∈I∩J
Zi,
√

2/(1− p)Cη t
√

n
)
.

Informally, we expect that |I ∩J |= O(n) with high probability, the Eu|Zi|2 to be lower bounded with high proba-
bility, and the Eu|Zi|3 to be upper bounded with high probability for i ∈I ∩J , in order to benefit from the effect of the
Berry-Esséen theorem in a manner similar to Inequality (12).

More rigorously, for each i ∈I , we have

Eu|Zi|2 = Ex00 |α̃ ỹix00 +αyix00|2 = E|x00|2
(
α̃

2|ỹi|2 +α
2|yi|2

)
+2αα̃ℜ

(
Ex2

00ỹiyi
)
≥ n−1

ϑ(α̃2|ỹi|2 +α
2|yi|2)

for all large enough n, where ϑ = 1− limsupn |nEx2
00| is positive by Assumption 3. Focusing on the set I ∩J , we get

that

∑
i∈I∩J

Eu|Zi|2 ≥ n−1
ϑ ∑

i∈I∩J
α

2|yi|2 ≥ α
2
ϑρ

2
13
|I ∩J |

nN
. (28)

Moreover,

∑
i∈I∩J

Eu|Zi|3 ≤ 32E|x00|3(α3 + α̃
3)
|I ∩J |
θ

3/2
13 N3/2

.
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Then, by the Berry-Esséen theorem,

Lu

(
∑
i∈cI

Zi,
√

2/(1− p)Cη t
√

n

)
≤Lu

(
∑

i∈I∩J
Zi,
√

2/(1− p)Cη t
√

n
)

≤
(√

2/(1− p)c

√
N

αρ13
√

ϑ |I ∩J |
Cη nt +

32cm3/4
4 (α3 + α̃3)

ρ3
13ϑ 3/2θ

3/2
13 α3

1√
|I ∩J |

)
∧1,V ∧1

(here, we assume that Lu(∑I∩J · · ·) =V = 1 if I ∩J = /0). The constant c > 0 in the term after the second inequality
is the one that appears in the statement of Proposition 6. In the remainder of the proof, the value of this constant may
change without mention.

At this stage of the calculation, we have

P[[dist(h0,H−0)≤ t]∩Eop(C)]2 ≤ 2EW,ξ ,x,x′ [(V ∧1)1Eop(C)]+2P[EDen(η)c∩Eop(C)]2. (29)

Now, take p = 1−θ13/8, and consider the event

Eξ = [|I |> N(1−θ13/4)] =
[
∑ξi > N(1−θ13/4)

]
.

Since Eξ = [|I |> N(p−θ13/8)], we get by Hoeffding’s concentration inequality [24] that

P[E c
ξ
]≤ exp(−Nθ

2
13/32).

Consider also the event
Eincomp = [y ∈ incomp(θ13,ρ13)].

By Corollary 14, there exists a constant c > 0 such that

P[E c
incomp∩Eop(C)]≤ exp(−cn).

On Eincomp, we have that |J | ≥ θ13N/2 by Lemma 8. Therefore, on Eξ ∩Eincomp, it holds that

|I ∩J |= N−|I c∪J c| ≥ N−|I c|− |J c| ≥ Nθ13/4.

It remains to control the terms α and α̃ in the expression of V . Given a small β > 0, consider the event

Eα(β ) =
[
β‖R‖HS/

√
n≤ ‖RΠI c(x− x′)‖√

2(1− p)
≤ β

−1/2‖R‖HS/
√

n
]
∩
[‖(x− x′)∗ΠI c R‖√

2(1− p)
≤ β

−1/2‖R‖HS/
√

n
]
.

Note that α ∈ [β ,β−1/2] and α̃ ≤ β−1/2, thus (α3 + α̃3)/α3 ≤ 2β−9/2 on Eα(β ). Applying Lemma 16 after setting the
vector y in its statement to ((1− ξ0)(x00− x′0), . . . ,(1− ξN−1)(xN−1,0− x′N−1))

T/
√

2(1− p), we get that there exists a
constant c > 0 for which

P[Eα(β )
c∩Eop(C)]≤ cβ +

c√
n
.

Turning back to (29), we can now conclude by writing

P[[dist(h0,H−0)≤ t]∩Eop(C)]2

≤ 2EW,ξ ,x,x′ [V1Eξ
1Eincomp1Eα (β )1Eop(C)]]+2P[E c

ξ
]+2P[E c

incomp∩Eop(C)]+2P[Eα(β )
c∩Eop(C)]+2P[EDen(η)c∩Eop(C)]2

≤ c

(
n

β
√

η
t +

β−9/2
√

n
+β +η +

1√
n

)
+ exp(−c′n).

If we take η ∝ n−1/2 and β ∝ n−1/11 (without further optimization of these exponents), then we get that

P[[dist(h0,H−0)≤ t]∩Eop(C)]2 ≤ c(n59/44t +n−1/11)+ exp(−c′n),

which proves Proposition 10.
Theorem 1: end of proof. First note that for any k ∈ [n], Proposition 10 continues to hold when dist(h0,H−0) is

replaced by dist(hk,H−k), by the same proof. When n≤ k < N +n, too, the proof continues to be valid once the roles of
A and z are interchanged. Indeed, one can check that the argument is simpler and hence is omitted. Applying Lemma 9,
we obtain that

P
[[

inf
u∈incomp(θ7,ρ7)

‖Hu‖ ≤ t
]
∩Eop(C)

]
≤ c(n81/88t1/2 +n−1/22)+ exp(−c′n).

Using Proposition 7 along with the characterization (5) of the smallest singular value, we obtain Theorem 1 with α =
81/88 and β = 1/22.
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Remark 1. The proof of Proposition 10 shows that the origin of the slow decreasing term n−β = n−1/22 at the right
hand side of the last inequality is the O(1/

√
n) decay that is optimal while using the Berry-Esséen theorem, as shown by

Inequality (12). To obtain a better decay rate of the concentration functions, one can use the so-called Littlewood-Offord
theory [12] instead. This was the approach of [33, 35, 36, 38] to solve small singular value problems.

Remark 2. Assumption 3 was needed in the proof of Proposition 10 to ensure that the variance at the left hand side
of (28) is bounded away from zero.

4 Proof of Theorem 2
A well established technique for studying the spectral behavior of large random non-Hermitian matrices is Girko’s so-
called hermitization technique [14]. This is intimately tied to the logarithmic potential of their spectral measures. In all
the remainder, we shall write Y = XJX∗, and recall that {λ0, . . . ,λN−1} are the eigenvalues of this matrix. The logarithmic
potential Uµn : C→ (−∞,∞] of the spectral measure µn can then be written as

Uµn(z) =−
∫
C

log |λ − z| µn(dλ ) =− 1
N

N−1

∑
i=0

log |λi− z|=− 1
N

log |det(Y − z)|

=− 1
2N

logdet(Y − z)(Y − z)∗ =−
∫

logλ νn,z(dλ ),

where the probability measure νn,z is the singular value distribution of Y − z, given as

νn,z =
1
N

N−1

∑
i=0

δsi(Y−z).

The above observation is at the heart of the hermitization technique. It transforms the eigenvalue problem into a problem
of singular values. To study the asymptotic behavior of µn, we need to study the asymptotic behavior of Uµn(z) for
Lebesgue almost all z ∈ C. To that end, we need to perform the two following steps, see, e.g., [7, Lemma 4.3]:

Step 1: Show that for almost all z ∈ C, νn,z⇒ νz (a deterministic probability measure) in probability.

Step 2: Show that the function log is uniformly integrable with respect to the measure νn,z for almost all z ∈ C in
probability. That is,

∀ε > 0, lim
T→∞

limsup
n≥1

P
[∫

∞

0
| logλ |1| logλ |≥T νn,zd(λ )> ε

]
= 0. (30)

By achieving these two steps, we conclude that there exists a probability measure µ such that µn⇒ µ in probability,
and such that Uµ(z) =−

∫
log |λ | ν̌z(dλ ) C-almost everywhere.

Step 3: Identify µ . This can be done by relying on the generic relation µ =−(2π)−1∆Uµ , where ∆ is the Laplace operator
defined on D ′(C), the space of Schwarz distributions on C.

Step 1: Weak convergence of νn,z Going a bit further than what is required for this step, we shall show that for each
z ∈ C, there exists a probability measure νz such that νn,z ⇒ νz almost surely. As is usual in random matrix theory,
this convergence will be established through the convergence of the associated Stieltjes transforms. For this, it will be
convenient to consider the Hermitian matrix

Σ(z) =
(

0 Y − z
Y ∗− z̄ 0

)
whose spectral measure

ν̌n,z =
1

2N

N−1

∑
i=0

(
δsi(Y−z)+δ−si(Y−z)

)
is the symmetrized version of νn,z (ν̌n,z is symmetric in the sense that ν̌n,z(S) = ν̌n,z(−S) for each Borel set S ⊂ R). It is
enough to show that ν̌n,z converges weakly a.s. to a probability measure ν̌z. Given η ∈ C+ = {w ∈ C,ℑw > 0}, let us
write

Q(z,η)= (Σ(z)−η)−1 =

(
η [(Y − z)(Y − z)∗−η2]−1 (Y − z)[(Y − z)∗(Y − z)−η2]−1

[(Y − z)∗(Y − z)−η2]−1(Y − z)∗ η [(Y − z)∗(Y − z)−η2]−1

)
=

(
Q00(z,η) Q01(z,η)
Q10(z,η) Q11(z,η)

)
,

(31)
which is the resolvent of Σ(z) in the complex variable η . The a.s. convergence νn,z⇒ νz is a consequence of the following
theorem, whose proof is provided in Section 5. Note that the Stieltjes transform of a symmetric probability measure is
purely imaginary with a positive imaginary part on the positive imaginary axis.
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Theorem 21. Let Assumption 1 hold true. Then

1
2N

trQ(z,η)
a.s.−−−→

n→∞
γ
−1 p(z,η),

1
N

trQ01(z,η)
a.s.−−−→

n→∞
γ
−1d(z,η), η ∈ C+, (32)

where for each z∈C, (p(z, ·),d(z, ·)) is a pair of holomorphic functions on C+ such that γ−1 p(z, ·) is the Stieltjes transform
of a symmetric probability measure, |d(z,η)| ≤ γ/ℑη , and writing p(z, ıt) = ıh(z, t) for t > 0, the pair (h(z, t),d(z, ıt)) ∈
(0,∞)×C uniquely solves the equations

−th(z, t)+ z̄d(z, ıt) = u(h(z, t),d(z, ıt), t)− γ, (33a)
zh(z, t)+ td(z, ıt) = v(h(z, t),d(z, ıt), t), (33b)

where

u(h,d) =
1

2π

∫ 2π

0

h2 + |d|2 +d exp(ıθ)
h2 + |1+d exp(ıθ)|2

dθ ,

v(h,d) =
1

2π

∫ 2π

0

hexp(−ıθ)
h2 + |1+d exp(ıθ)|2

dθ .

(34)

It is well known that the convergence of (2N)−1 trQ(z,η) in (32) implies that ν̌n,z⇒ ν̌z (symmetric) a.s., with Stieltjes
transform γ−1 p(z, ·). The system of equations (33) which provides the values of p(z, ·) on the positive imaginary axis
completely determines the measure ν̌z. The function d(z, ıt) will be used below to identify the limit measure µ .

Step 2: uniform integrability Noting that log is unbounded near both 0 and ∞, we start with the uniform integrability
near zero.

Proposition 22. Let Assumption 1 hold true, and assume that z 6= 0. Then, there exist two constants α,C > 0 such that

−ı
N

E trQ(z, ıt)≤C(1+ t−α n−1/2).

The proof is sketched at the end of Section 5. We just point out that by using this proposition and by making some
elementary Stieltjes transform calculations (see [20, Proposition 14]), one can show that there exist constants K,ρ > 0
such that Eσ̌n([−x,x]) ≤ K(x∨ n−ρ). This is a so-called local Wegner estimate on the number of intermediate singular
values [7].

The smallest singular value of Y − z is controlled by Theorem 1 with A = J. Thanks to the boundedness of the
fourth moment specified by Assumption 1, we know from [40] that ‖X‖ a.s.−−−→

n→∞
1+
√

γ . Thus, the probability of the event

[‖X‖ ≤C] in the statement of Theorem 1 converges to 1 by setting C = 2+
√

γ .
Thanks to these controls, we get that for all z ∈ C\{0},

∀ε > 0, lim
δ→0

limsup
n≥1

P
[∣∣∫ δ

0
logλ νn,z(dλ )

∣∣> ε

]
= 0, (35)

see [20, Proposition 14] for a proof that results of the type of Proposition 22 and Theorem 1 lead together to (35).

Remark 3. The uniform integrability only in probability and the convergence only in probability in Theorem 2 are due
to the slow rate β = 1/22 in the statement of Theorem 1.

To complete Step 2, it only remains to establish the uniform integrability of log near infinity. But this result follows
immediately from the identity

∫
λ≥T logλ νn,z(dλ ) = 0 a.s. for all large n, which is valid for T > (1+

√
γ)2 + |z|+1.

Step 3: Identification of µ We use an idea that dates back to [13] and that has been frequently used in the literature
devoted to large non-Hermitian matrices. Define on C× (0,∞) the regularized versions of Uµn(z) and Uµ(z) respectively:

Un(z, t) =−
1

2N
logdet((Y − z)∗(Y − z)+ t2), and

U (z, t) =−1
2

∫
log(λ 2 + t2) ν̌z(dλ ) .

In parallel, let us get back to the resolvent Q(z,η) defined in (31). By Jacobi’s formula,

∂z̄Un(z, t) =
1

2N
tr(Y − z)((Y − z)∗(Y − z)+ t2)−1 =

1
2N

trQ01(z, ıt).
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Letting n→ ∞ we know from Theorem 21 that ∂z̄Un(z, t)→ (2γ)−1d(z, ıt) a.s. At the same time, Un(z, t)→ U (z, t)
a.s. since νn,z⇒ νz. We can therefore assert that ∂z̄U (z, t) = (2γ)−1d(z, ıt) in D ′(C), and then extract the properties of µ

from the equation

µ =− 1
2π

∆Uµ =− 2
π

lim
t→0

∂z∂z̄U (z, t) =− 1
γπ

lim
t→0

∂zd(z, ıt) in D ′(C).

This line of thought leads to the following proposition, which proof can be done along the lines of [11, Section 7], and is
omitted.

Proposition 23. As t→ 0, the function (2γ)−1d(·, ıt) converges to ∂z̄Uµ(·) in D ′(C).

The following lemma specifies the properties of the function g defined in (2), that we shall need. Its proof is straight-
forward.

Lemma 24. Consider the function g on the interval [0∨ (γ − 1),γ]. It is analytical and increasing on (0∨ (γ − 1),γ).
Moreover, g(0∨ (γ−1)) = 0∨ (γ−1)3/γ , and g(γ) = γ(γ +1).

By this lemma, g has an inverse g−1 on [0∨ (γ − 1)3/γ,γ(γ + 1)] that takes this interval to [0∨ (γ − 1),γ]. On
(0∨ (γ−1)3/γ,γ(γ +1)), the function g−1 is analytical and increasing.

By showing that d(z, ıt) converges as t → 0 point-wise for each z 6= 0 and by identifying the limit function b(z), we
get the following proposition whose proof is given in Section 6.

Proposition 25. Let b(z) be the function defined on C\{0} as follows: If γ ≤ 1, then

b(z) =

 −g−1(|z|2)/z̄ if 0 < |z| ≤
√

γ(γ +1),

−γ/z̄ if |z| ≥
√

γ(γ +1).

If γ > 1, then

b(z) =


−(γ−1)/z̄ if 0 < |z| ≤ (γ−1)3/2/

√
γ,

−g−1(|z|2)/z̄ if (γ−1)3/2/
√

γ ≤ |z| ≤
√

γ(γ +1),

−γ/z̄ if |z| ≥
√

γ(γ +1).

Then ∂z̄Uµ(z) = (2γ)−1b(z) in D ′(C).

By Lemma 24, b(z) = b(u+ ıv) is continuously differentiable as a function of u,v on the open set S = {z ∈ C : z 6=
0, |z|2 6= (γ − 1)3/γ, |z|2 6= γ(γ + 1)}. Therefore, ∆Uµ = 4∂z∂z̄Uµ coincides with 2γ−1∂zb in D ′(S), where ∂zb is the
pointwise derivative of b w.r.t. z. Specifically, for each test function ϕ ∈ C∞

c (S), the set of compactly supported real
smooth functions on C, we have∫

C
ϕ dµ =− 1

2π

∫
C

ϕ(z)∆Uµ(z) dz =− 1
γπ

∫
C

ϕ(z)∂zb(z) dz =
∫
C

ϕ(z) f (z) dz,

where, by Proposition 25, the density f (z) of µ on S is given by

f (z) =


1

γπ
∂z

g−1(|z|2)
z̄

=
1

γπ
∂|z|2g−1(|z|2) if 0∨ ((γ−1)3/γ)< |z|2 < γ(γ +1),

0 elsewhere

(36)

Hence the density f depends on z through |z| only, and thus µ is rotationally invariant on S.
Now we consider µ on the boundary ∂S. We deal separately with the cases γ ≤ 1 and γ > 1. First suppose γ ≤ 1. Let

0 < s < r <
√

γ(γ +1). Changing to polar co-ordinates, we get

µ({z : |z| ∈ [s,r]}) = 1
γπ

∫
{z:|z|∈[s,r]}

∂|z|2g−1(|z|2) dz = γ
−1g−1(r2)− γ

−1g−1(s2).

But since γ−1g−1(0) = 0 and γ−1g−1(γ(γ +1)) = 1, we get that µ({0}) = µ({z : |z|=
√

γ(γ +1)}) = 0, establishing the
formula in Theorem 2 for γ ≤ 1.

Now suppose γ > 1. Put a = (γ−1)3/2/
√

γ . If we set 0 < s < r < a, we obtain from (36) that µ({z : |z| ∈ [s,r]}) = 0.
If a < s < r <

√
γ(γ +1), then µ({z : |z| ∈ [s,r]}) = γ−1g−1(r2)− γ−1g−1(s2) by the same derivation as for γ ≤ 1.

Now we claim that µ({z : |z|= a}) = 0. To show this, let φ : [−1,1]→ [0,1] be a smooth function such that φ(0) = 1
and φ(−1) = φ(1) = 0. Given ε > 0, define the C→ [0,1] function ψε(z) = φ((|z|− a)/ε), which is supported on the
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ring {z : a−ε ≤ |z| ≤ a+ε}. It is then enough to show that
∫

ψε dµ→ 0 as ε→ 0. Indeed, by an integration by parts, we
get that ∫

ψε dµ =− 1
γπ

∫
ψε(z)∂zb(z) dz =

1
γπ

∫
∂zψε(z)b(z) dz =

1
2εγπ

∫ 1
|z|

φ
′
(
|z|−a

ε

)
c(|z|) dz,

where the function c(ρ) = z̄b(z) for ρ = |z| is a real bounded function near ρ = a that satisfies c(a) = 1− γ by Propo-
sition 25. Making a Cartesian to polar variable change and using the dominated convergence theorem, we get that∫

ψε dµ →ε→0
1−γ

γ
(φ(1)− φ(−1)) = 0. Since γ−1g−1(a2) = 1− γ−1, we can infer now that µ({z : s ≤ |z| ≤ r}) =

γ−1g−1(r2)− (1−γ−1) for each s ∈ (0,a) and each r ∈ [a,
√

γ(γ +1)). Letting s ↓ 0 and r ↑
√

γ(γ +1), and recalling that
g−1(γ(γ +1)) = γ , we get that µ({z : |z|<

√
γ(γ +1)}) = 1− (1− γ−1)+µ({0}). Similarly to µ({z : |z|= a}) = 0, we

can show that µ({z : |z|=
√

γ(γ +1)}) = 0. We therefore get that µ({0}) = 1−γ−1, and hence the formula in Theorem 2
is verified also for γ > 1.

5 Limit singular value distribution
Given (z,η)∈C×C+, α ∈R, and a sequence (an(z,η))n of complex numbers, the notation an =Oη(nα) (or an =Ot(nα)
when η = ıt) will refer in this section to the existence of a constant C > 0 and two non-negative integers k and ` such
that |an(z,η)| ≤ C|η |k

(ℑη)`
nα . The constants C, k, and ` may depend on z but not on η or n. If an(z,η) is a matrix, then the

notations an = Oη(nα) and an = Ot(nα), are to be understood in a uniform entry-wise sense.

Proof of Theorem 21. We first state that the n−1 trQi j(z,η), i, j = 0,1 concentrate around their means, and that the
elements of X can be replaced by complex Gaussian random variables. The proof of the following proposition is standard
and is omitted.

Proposition 26. Under Assumption 1, for each (z,η) ∈ C×C+, if n→ ∞,

1
n

(
trQ00(z,η) trQ01(z,η)
trQ10(z,η) trQ11(z,η)

)
− 1

n

(
trEQ00(z,η) trEQ01(z,η)
trEQ10(z,η) trEQ11(z,η)

)
a.s.−−→ 0.

Let xN = (U + ıV )/
√

2n, where U and V are real independent standard Gaussian random variables. Define XN =(
xN

i j
)N−1,n−1

i, j=0 , where the xN
i j are independent copies of xN . Let QN

i j (z,η) be the analogues of the Qi j(z,η), obtained by

replacing the matrix X with XN . Then,

1
n

(
trEQ00(z,η) trEQ01(z,η)
trEQ10(z,η) trEQ11(z,η)

)
− 1

n

(
trEQN

00 (z,η) trEQN
01 (z,η)

trEQN
10 (z,η) trEQN

11 (z,η)

)
= Oη(n−1/2).

Thanks to Proposition 26, we reduce our problem to the study of n−1 trEQi j(z,η) in the complex Gaussian case. We
now invoke the so-called Integration by Parts (IP) formula for Gaussian variables [32]. Let w = (w0, . . . ,wn−1)

T be a
complex Gaussian random vector with Ew = 0, EwwT = 0, and E[ww∗] = Ξ. Let ϕ = ϕ(w0, . . . ,wn−1, w̄0, . . . , w̄n−1) be a
C1 complex function which is polynomially bounded together with its derivatives. Then, the IP formula reads as

Ewkϕ(w) =
n−1

∑
`=0

[Ξ]k`E
[

∂ϕ(w)
∂ w̄`

]
. (37)

We shall apply this formula to the case w≡ X and ϕ ≡ u∗Qv where Q = Q(z,η) is the resolvent given by Eq. (31) (seen
as a function of X), and u and v are deterministic vectors in C2N . By a standard derivation, we have

∂u∗Qv
∂ x̄i j

=−u∗Q
(

0 XJen, je∗N,i
XJ−1en, je∗N,i 0

)
Qv.

In particular, by taking u = e2N,k and v = e2N,` for k, ` ∈ [N], we obtain that

∂ [Q00]k,`
∂ x̄i j

=−[Q01XJ−1]k j[Q00]i`− [Q00XJ]k j[Q10]i`, (38)

and by taking u = e2N,k and v = e2N,N+` for k, ` ∈ [N], we get

∂ [Q01]k,`
∂ x̄i j

=−[Q00XJ]k j[Q11]i`− [Q01XJ−1]k j[Q01]i`. (39)

Given M ∈ Cn×n, we shall also use the trivial relations [MJk]·, j = [M]·, j+k and [JkM]i,· = [M]i−k,·, where both the sum
j+ k and the difference i− k are taken modulo-n.
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We can now start our calculations. Recalling that x j refers to the jth column of X for j ∈ [n], our first task is to study
quadratic forms of the type x∗kQ00x` and x∗kQ01x`. Define the matrices

A00 = E
(
x∗kQ00x`

)n−1
k,`=0 and A01 = E

(
x∗kQ01x`

)n−1
k,`=0 .

It is obvious that X L
= XJm for each m ∈ Z. Thus, given a measurable function f : CN×N → CN×N and the integers

k, `,m ∈ [n], it holds that

x∗k+m f (XJX∗)x`+m = e∗n,k+mX∗ f (XJX∗)Xen,`+m = e∗n,kJ−mX∗ f (XJmJJ−mX∗)XJmen,`
L
= x∗k f (XJX∗)x`,

where the index summations are taken modulo-n. As a consequence, the matrices A00 and A01 are circulant matrices, a
fact very useful to us.

Starting with A00, we have by the IP formula (37),

Ex∗kQ00x` =
N−1

∑
i, j=0

E[(x̄ik[Q00]i j)x j`] =
1
n ∑

i, j
E
[

∂ (x̄ik[Q00]i j)

∂ x̄ j`

]
=

1
n ∑

i, j
1i= j1k=`E[Q00]i j−

1
n ∑

i, j
E[Q01XJ−1]i`x̄ik[Q00] j j−

1
n ∑

i, j
E[Q00XJ]i`x̄ik[Q10] j j (using 38)

= 1k=`E trQ00/n−E
[
[X∗Q01XJ−1]k` trQ00/n

]
−E [[X∗Q00XJ]k` trQ10/n] .

We also have

Ex∗kQ01x` =
N−1

∑
i, j=0

E[(x̄ik[Q01]i j)x j`] =
1
n ∑

i, j
E
[

∂ (x̄ik[Q01]i j)

∂ x̄ j`

]
(using 39)

= 1k=`E[trQ01/n]−E [[X∗Q00XJ]k` trQ11/n]−E
[
[X∗Q01XJ−1]k` trQ01/n

]
.

In the right side of the above two expressions we have terms of the type E [[· · · ]k` trQi j/n]. We now need to decouple
[· · · ]k` from trQi j/n. Specifically, we have the following lemma.

Lemma 27. For each i, j ∈ {0,1} and each k, ` ∈ [n],

Var(trQi j/n) = Oη(n−2) and Var(x∗kQi jx`) = Oη(n−1).

This lemma can be proven with the help of, e.g., the so-called Poincaré-Nash inequality [9], [32], which is a particular
case of the Brascamp-Lieb inequality [24]. A result of this sort is standard in random matrix theory. We omit its proof for
lack of space.

Let us write qi j = qi j(z,η) = n−1E trQi j(z,η) for i, j ∈ {0,1}. Using Lemma 27, and applying the Cauchy-Schwartz
inequality, it is easy to see that

Ex∗kQ00x` = 1k=`q00−E
[
[X∗Q01XJ−1]k`

]
q00−E [[X∗Q00XJ]k`]q10 +Oη(n−3/2),

Ex∗kQ01x` = 1k=`q01−E [[X∗Q00XJ]k`]q11−E
[
[X∗Q01XJ−1]k`

]
q01 +Oη(n−3/2).

Since Y is a square matrix, we see from (31) that q00 = q11. Thus, the equations above can be written in a matrix form
as

A00(In +q10J)+q00A01J−1 = q00In +Oη(n−3/2), and (40)

q00A00J+A01(In +q01J−1) = q01In +Oη(n−3/2). (41)

Let us give these equations a more symmetric form. Developing (41)×q00J−1− (40)× (I +q01J−1), we get that

A00
[
q2

00− (In +q10J)(In +q01J−1)
]
=−q00 +Oη(n−3/2). (42)

Similarly, taking (40)×q00J− (41)× (I +q10J),

A01
[
q2

00− (In +q10J)(In +q01J−1)
]
= q2

00J−q01(In +q10J)+Oη(n−3/2). (43)

Now, by using the obvious identity Q(Σ−η) = I2N we obtain

−ηQ00− z̄Q01 +Q01XJ−1X∗ = IN ,

−zQ00−ηQ01 +Q00XJX∗ = 0,
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(the similar equations involving the terms Q10 and Q11 will not be used). Taking the traces of the expectations, we get

−ηq00− z̄q01 +n−1 trA01J−1 = γn, (44)

−zq00−ηq01 +n−1 trA00J = 0, (45)

where γn = N/n.
Recalling that q(n)00 (z,η) = n−1E trQ(n)(z,η), the function γ−1

n q(n)00 (z, ·) is the Stieltjes transform of the probability

measure Eν̌n,z. Hence, |γ−1
n q(n)00 (z,η)| ≤ 1/ℑη . So, {q(n)00 (z, ·)}n∈N is a normal family of holomorphic functions on C+.

Similarly, q(n)01 (z, ·) = n−1E trQ(n)
01 (z, ·) and q(n)10 (z,η) = n−1E trQ(n)

10 (z,η) are holomorphic functions in η ∈ C+ whose
absolute values are bounded by supn γn/ℑη .

Using the normal family theorem, let us extract from the sequence (n) a subsequence (still denoted as (n)) such that
q(n)00 (z, ·), q(n)01 (z, ·), and q(n)10 (z, ·) converge to holomorphic functions in the sense of uniform convergence on the compact
subsets of C+. Denote these functions respectively as p(z, ·), d(z, ·) and d̃(z, ·). We shall show that they uniquely solve
a system of equations on the line segment ı[C,∞) of the positive imaginary axis, where C is some positive constant. This
will show that p(z, ·) is uniquely defined on C+, and that q00(z, ·)→n p(z, ·) and q01(z, ·)→n d(z, ·) on C+. We then show
that tℑp(z, ıt)→ γ as t→ ∞. This will lead to the fact that γ−1 p(z, ·) is the Stieltjes transform of a symmetric probability
measure ν̌z.

Assume that η = ıt where t > 0. Then, since the measure Eν̌n,z is symmetric, q00(z, ıt) = ıs(z, t) with s(z, t) > 0.
Moreover, we notice from the expressions of Q01 and Q10 in (31) that q10(z, ıt) = q̄01(z, ıt).

Recall that A00 and A01 are circulant matrices. Writing Fn = n−1/2 [exp(2ıπk`/n)]n−1
k,`=0, the circulant matrix J can be

written as J = Fn diag(exp(−2ıπk/n))n−1
k=0F

∗
n. Notice that the matrices A00, A01 and J commute, since they are circulant.

Now, (42) can be rewritten as A00P = ıs+E where E = Ot(n−3/2) is a circulant matrix, and

P = s2 +(In + q̄01J)(In +q01J∗) = Fn diag
(

s2 + |1+q01 exp(2ı`/n)|2
)n−1

`=0
F∗n. (46)

If t ≥ 2supn γn, then |q01| ≤ 1/2, and thus, the positive definite matrix P satisfies P≥ (1/4)In in the semi-definite positive
ordering. In view of Equation (45), we need an expression for n−1 trA00J. We can write

trA00J
n

=
ıs trP−1J

n
+

trP−1JE
n

=
ıs
n

n−1

∑
`=0

exp(−2ıπ`/n)
s2 + |1+q01 exp(2ıπ`/n)|2

+
trP−1JE

n
. (47)

Given two square matrices M1 and M2 of the same size, it is well known that | trM1M2| ≤ (trM1M∗1)
1/2(trM2M∗2)

1/2. Thus,
since E = Ot(n−3/2), we get that

| trP−1JE|
n

≤ 1
n

√
trP−2

√
trEE∗ ≤ 1

n
2n1/2Ot(n−1/2) = Ot(n−1).

By a similar derivation, and in view of Equation (44), we also get from Equation (43) that

trA01J−1

n
=

1
n

n−1

∑
`=0

s2 + |q01|2 +q01 exp(2ıπ`/n)
s2 + |1+q01 exp(2ıπ`/n)|2

+Ot(n−1). (48)

Now, taking n to infinity along the subsequence (n) in Equations (44), (45), (47), and (48), writing p(ıt) = ıh(z, t)
where h(z, t) ≥ 0, and noting that d̃(z, ıt) = d̄(z, ıt), the pair (h(z, t),d(z, ıt)) satisfies the system of Equations (33) of the
statement of Theorem 21 for t ≥ 2supn γn.

Let us consider the system of equations in (h,d) ∈ (0,∞)×C

−th+ z̄d = u(h,d)− γ, (49a)
zh+ td = v(h,d), (49b)

where u(h,d) and v(h,d) are given by Equations (34). Writing

I(a,u) =
1

2π

∫ 2π

0

1
a2 + |1+uexp(ıθ)|2

dθ and J(a,u) =
1

2π

∫ 2π

0

exp(ıθ)
a2 + |1+uexp(ıθ)|2

dθ ,

the system (49) can be rewritten as

−th+ z̄d = (h2 + |d|2)I(h,d)+dJ(h,d)− γ, (50a)

zh+ td = hJ(h,d). (50b)

By the residue theorem (derivations omitted), the integrals are given by the expressions

I(a,u) =
1√

(a2 + |u|2 +1)2−4|u|2
, and J(a,u) =

1
2u

(
1− a2 + |u|2 +1√

(a2 + |u|2 +1)2−4|u|2

)
(51)

for each a ∈ R and u ∈ C such that a 6= 0 or |u| 6= 1.
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Lemma 28. There exists C > 0 (depending on z and γ) such that for each t ∈ [C,∞), the system (49) has a unique solution
(h,d) such that h ∈ (0,γ/t) and |d|< γ/t.

Sketch of proof. Using (50b), we show that we can assume without generality loss that z and d are real. Rewriting
the system (49) as (h,d)T = f ((h,d)T), we show by computing the Jacobian matrix of f that if C is large enough, f is a
Banach contraction on [0,2γ/t]× [−γ/t,γ/t]. �

We now prove that th(z, t) = tℑp(z, ıt)→ γ as t → ∞. The functions h(z, t) and d(t) satisfy (33a), and furthermore,
0≤ h(z, t), |d(t)| ≤ γ/t. From the expressions (51), it is clear that (h2+d2)I(h(z, t),d(t)) and d(t)J(h(z, t),d(t)) converge
to zero as t→ ∞. The result is then obtained from Equation (50a).

We also need to prove that (h(z, t),d(z, ıt)) satisfy the system (33) for each t > 0. By the convergence q00(z, ·)→ p(z, ·),
we get that Eν̌n,z⇒ ν̌z. In particular, Eν̌n,z is tight. Let a > 0 be such that infnEν̌n,z([−a,a])≥ 1/2. By an easy derivation
involving the expression of a Stieltjes transform, we then get that s(z, ıt)≥ γnt/(2(a2 + t2)). Therefore, for each t > 0, the
matrix P defined in (46) satisfies P ≥ γt/(4(a2 + t2))I in the semidefinite ordering for all large enough n. By repeating
the argument that follows Equation (46), we obtain that (p(z, ıt),d(z, ıt)) solve the system (33).

The proof of Theorem 21 is completed by combining Proposition 26 with the convergence of q00(z, ·) to p(z, ·).

Proposition 22: Sketch of proof. Assume first that X L
= XN , where XN was defined in the statement of Proposi-

tion 26. Fixing z 6= 0, and writing q00(z, ıt) = ıs, we obtain from Equations (44), (45), (47), and (48) that (s,q01) satisfy
a system which is a finite-n analogue to Equations (49) with a Ot(n−1) error. This system can be used to show that there
exist constants α,C > 0 such that s ∈ (0,C(1+n−1t−α)] for t ∈ (0,1]. The Gaussian assumption is then removed with the
help of Proposition 26.

6 Identification of µ . Proof of Proposition 25
The following preliminary lemma can be proven by inspecting Equations (49) and by using that p(z, ·)/γ is the Stieltjes
transform of ν̌z.

Lemma 29. For each z 6= 0, the function h(z, t) is bounded for t ∈ (0,∞), and h(z, t)/t is lower-bounded by a positive
constant for t ∈ (0,1]. Moreover, |d(z, ıt)| ≤C/|z| for C > 0.

In the proof of Proposition 25, we shall use the fact that (h(z, t),d(z, ıt)) satisfies the system of equations (50). We
rewrite Equation (50a) as γ = (h2 + |d|2)I(h,d)+dJ(h,d)− z̄d+ th, and Equation (50b) as z̄h+ td̄ = hJ(h,d), or equiva-
lently, as z̄d = dJ(h,d)− t|d|2/h. Since h(z, t)> 0 for t > 0, we can use the expressions (51) of the integrals I(h,d) and
J(h,d) to obtain

γ =
h2 + |d|2√

∆(h,d)
+

t
h

(
h2 + |d|2

)
,

2z̄d = 1− h2 + |d|2 +1√
∆(h,d)

−2|d|2 t
h
= 1− γ− γ

h2 + |d|2
+

t
h

(
h2 +1−|d|2

)
,

(52)

where ∆(h,d) = (h2 + |d|2 +1)2−4|d|2. We now let t→ 0. Here, each sequence tk→ 0 satisfies one of two cases : either
tk/h(z, tk)→ 0, or tk/h(z, tk)→ α where α is a positive number. Indeed, Lemma 29 shows that tk/h(z, tk)→∞ is excluded.

The case tk/h(z, tk)→ 0. Using Lemma 29, and taking a further subsequence, still denoted as (k), we can assume that
d(tk)→ b ∈ C and h(z, tk)→ r ≥ 0. The pair (r,b) satisfies the equations

γ
2
∆(r,b) = (r2 + |b|2)2, and (53)

2z̄b = 1− γ− γ

r2 + |b|2
. (54)

By Equation (54), the number y =−z̄b is real and satisfies

r2 + |b|2 = r2 +
y2

|z|2
=

γ

1− γ +2y
. (55)

Moreover, we have ∆(r,b) = ((γ/(1− γ +2y)+1)2−4y2/|z|2. Replacing in (53), we get(
γ

1− γ +2y
+1
)2

−4
y2

|z|2
=

1
(1− γ +2y)2 .

Reducing to the same denominator, we get after some simple manipulations that |z|2 = g(y), where g is the function given
in the statement of Theorem 2. Let us delineate the domain of variation of y. Equation |z|2 = g(y) = (1−γ +2y)2y/(y+1)
shows that y(y+ 1) > 0, thus y < −1 or y > 0. By Equation (55), γ

1−γ+2y ≥
y2

|z|2 = y(y+1)
(1−γ+2y)2 . We therefore get that
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2y+1− γ > 0 and furthermore, by rearranging the terms of the inequality above, that y2 +(1−2γ)y+ γ(γ−1)≤ 0. The
last inequality implies that γ−1≤ y≤ γ . In conclusion, we get that y ∈ [0∨ (γ−1),γ]\{0}.

The case tk/h(z, tk)→ α > 0. Here we get of course that h(z, tk)→ 0. Taking a subsequence if necessary, we shall
assume that d(tk)→ b. Getting back to the system (52) and taking tk to zero, we get that

γ
∣∣1−|b|2∣∣= |b|2 +α|b|2

∣∣1−|b|2∣∣ ,
2z̄b|b|2 = (1− γ)|b|2− γ +α|b|2(1−|b|2).

The first equation implies that |b| 6∈ {0,1}, and that α = γ

|b|2 −
1

|1−|b|2| . Replacing α by its value in the second equation,

we get after a simple calculation that 2z̄b = 1− 2γ − 1−|b|2
|1−|b|2| . Here we need to consider two cases: either |b| < 1 or

|b| > 1. If |b| < 1, we get from the last equation that b = −γ/z̄ (thus, |z| ≥ γ). Plugging in the expression of α , we get
that α = |z|2

(
1
γ
− 1
|z|2−γ2

)
. Since α > 0, this implies that |z|>

√
γ(γ +1). If |b|> 1, we obtain that b = (1− γ)/z̄, thus,

|z| < |1− γ| and α = |z|2
(

γ

(1−γ)2 − 1
(1−γ)2−|z|2

)
. Using again that α > 0, we get after a small calculation that γ > 1 and

|z|2 ≤ (γ−1)3/γ . Let us summarize our conclusions for clarity.

• If tk/h(z, tk)→ 0, let b be an arbitrary accumulation point of d(z, tk), and let y =−z̄b. If γ ≤ 1, then y ∈ (0,γ], and
|z|2 = g(y) ∈ (0,γ(γ +1)]. If γ > 1, then y ∈ [γ−1,γ], and |z|2 = g(y) ∈ [(γ−1)3/γ,γ(γ +1)].

• If tk/h(z, tk) converges to a positive constant, let b be an arbitrary accumulation point of d(z, tk). If γ ≤ 1, then
|z|2 > γ(γ +1), and b = −γ/z̄. If γ > 1, thein either |z|2 > γ(γ +1) in which case b = −γ/z̄, or |z|2 < (γ−1)3/γ ,
in which case b = (1− γ)/z̄.

These statements show that given z 6= 0, the accumulation points b reduce to a genuine limit. Moreover, the behavior
of this limit b(z) is as described in the statement of Proposition 25.

From the point-wise convergence d(z, ıt)→t→0 b(z) for z 6= 0 and Lemma 29, we get that d(·, ıt)→t→0 b(·) in D ′(C).
Thus, (2γ)−1b(z) = ∂z̄Uµ(z) in D ′(C) by Proposition 23.
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