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Abstract

We investigate the asymptotic distribution of the maximum of a frequency
smoothed estimate of the spectral coherence of a M -variate complex Gaus-
sian time series with mutually independent components when the dimension
M and the number of samples N both converge to infinity. If B denotes the
smoothing span of the underlying smoothed periodogram estimator, a type
I extreme value limiting distribution is obtained under the rate assumptions
M
N
→ 0 and M

B
→ c ∈ (0,+∞). This result is then exploited to build a statis-

tic with controlled asymptotic level for testing independence between the M
components of the observed time series. Numerical simulations support our
results.

Keywords: Spectral Analysis, High Dimensional Statistics, Time Series,
Independence Test.
2010 MSC: 62H15, 62H20, 62M15

?This work is funded by ANR Project HIDITSA, reference ANR-17-CE40-0003.
Email addresses: philippe.loubaton@univ-eiffel.fr (Philippe Loubaton),

alexis.rosuel@univ-eiffel.fr (Alexis Rosuel), pascal.vallet@bordeaux-inp.fr
(Pascal Vallet)

ar
X

iv
:2

10
7.

02
89

1v
1 

 [
m

at
h.

ST
] 

 2
4 

Ju
n 

20
21



1. Introduction

1.1. The addressed problem and the results

We consider M jointly stationary complex Gaussian time series
(y1,n)n∈Z , . . . , (yM,n)n∈Z and for all i, j ∈ {1, . . . ,M}, we denote by sij and cij
the spectral density and spectral coherence between (yi,n)n∈Z and (yj,n)n∈Z
given respectively by

sij(ν) =
∑
u∈Z

rij(u)e−i2πuν

and

cij(ν) =
sij(ν)√

sii(ν)sjj(ν)

for all ν ∈ [0, 1], where rij(u) = E[yi,n+uyj,n]. Assuming N observations
(y1,n)n=1,...,N , . . . , (yM,n)n=1,...,N are available for each time series, we consider
the frequency smoothed estimate ŝij of sij given by

ŝij(ν) =
1

B + 1

B/2∑
b=−B/2

ξyi

(
ν +

b

N

)
ξyj

(
ν +

b

N

)
, (1)

where B is an even integer representing the smoothing span, and where

ξyi(ν) =
1√
N

N∑
n=1

yi,ne−2iπ(n−1)ν

denotes the normalized Fourier transform of (yi,n)n=1,...,N . The corresponding
sample estimate of the spectral coherence is defined as

ĉij(ν) =
ŝij(ν)√

ŝii(ν)ŝjj(ν)
.

Under the hypothesis

H0 : (y1,n)n∈Z, . . . , (yM,n)n∈Z are mutually uncorrelated,

we evaluate the behaviour of the Maximum Sample Spectral Coherence
(MSSC) defined by

max
1≤i<j≤M

max
ν∈G
|ĉij(ν)|
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where

G :=

{
k
B + 1

N
: k ∈ N, 0 ≤ k ≤ N

B + 1

}
is the subset of the Fourier frequencies

F :=

{
k

N
: k ∈ N, 0 ≤ k ≤ N − 1

}
with elements spaced by a distance (B+1)/N . Our study is conducted in the
asymptotic regime where M = M(N) and B = B(N) are both functions of N
such that for some ρ ∈ (0, 1), M � Nρ and B � Nρ as N →∞ 1 , while the
ratio M/B converges to some constant c ∈ (0,+∞). It is established that,
under H0 and proper assumptions on the time series (y1,n)n∈Z, . . . , (yM,n)n∈Z,
for any t ∈ R:

P
(

(B + 1) max
(i,j,ν)∈I

|ĉij(ν)|2 ≤ t+ log
N

B + 1
+ log

M(M − 1)

2

)
−−−−→
N→+∞

e−e
−t

(2)

where
I := {(i, j, ν) : i, j ∈ [M ] such that i < j, ν ∈ G} (3)

with [M ] = {1, . . . ,M}.
In other words, under proper normalization and centering,

max(i,j,ν)∈I |ĉij(ν)|2 follows asymptotically a Gumbel distribution (see
Embrechts et al. (2013) or Resnick (2013) for a general theory of extreme
value distributions).

1.2. Motivation

This paper is motivated by the problem of testing the independence of a
large number of Gaussian time series. Since hypothesis H0 can be equiva-
lently formulated as

H0 : max
1≤i<j≤M

max
ν∈[0,1]

|sij(ν)|2 = 0,

1For two sequences (xn)n≥1, (yn)n≥1, we denote by xn � yn if there exists k1, k2 > 0
such that k1|yn| ≤ |xn| ≤ k2|yn| for all large n.
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or by

H0 : max
1≤i<j≤M

max
ν∈[0,1]

|cij(ν)|2 = 0,

this suggests to compute consistent estimators of these quantities, and test
their closeness to zero.

Our choice of the high-dimensional regime defined above is motivated
as follows. Under mild assumptions on the memory of the time series
((ym,n)n∈Z)m≥1, in the low-dimensional regime where N → +∞ and M is
fixed, it can be shown that the sample spectral coherence matrix

Ĉ(ν) = (ĉi,j(ν))i,j=1,...,M (4)

is a consistent estimate (in spectral norm for instance) of the spectral coher-
ence matrix

C(ν) = (ci,j(ν))i,j=1,...,M

as long as B → +∞ and B/N → 0 (up to some additional logarithmic
terms). In practice, this asymptotic regime and the underlying predictions
are relevant as long as the ratio M/N is small enough. If this condition is
not met, test statistics based on Ĉ(ν) may be of delicate use, as the choice
of the smoothing span B must meet the constraints B � M (because B
is supposed to converge towards +∞) as well as B � N (because B/N is
supposed to converge towards 0). Nowadays, for many practical applications
involving high dimensional signals and/or a moderate sample size, the ratio
M/N may not be small enough to be able to choose B so as to meet B �M
and B � N . In this situation, one may rely on the more relevant high
dimensional regime in which M,B,N converge to infinity such that M/B
converges to a positive constant while B/N converges to zero.

1.3. On the literature

Correlation tests using spectral approaches have been studied in several
papers, see e.g. Wahba (1971), Eichler (2008) and the references therein.

More recently, an approach similar to the one of this paper has been
explored in Wu and Zaffaroni (2018), where the maximum of the sample
spectral coherence, when using lag-window estimates of the spectral density,
is studied. In the low-dimensional regime where M is fixed and N →∞, it is
proved that the distribution of such statistic underH0, after proper centering

4



and normalization, converges to the Gumbel distribution. We also mention
other related papers exploring the asymptotic behaviour of various spectral
density estimates in the low-dimensional regime: Woodroofe and Van Ness
(1967), Rudzkis (1985), Shao et al. (2007), Lin and Liu (2009) and Liu and
Wu (2010).

In the high-dimensional regime when M is a function of N such that
M := M(N)→ +∞, few results on the behaviour of correlation test statistics
in the spectral domain are known. Loubaton and Rosuel (2021) proved that
under H0 and mild assumptions on the underlying time series, the empirical
eigenvalue distribution of Ĉ(ν) defined in (4) converges weakly almost surely
towards the Marcenko-Pastur distribution, which can be exploited to build
test statistics based on linear spectral statistics of Ĉ(ν). In Rosuel et al.
(2020), a consistent test statistic based on the largest eigenvalue of Ĉ(ν) was
derived for the problem of detecting the presence of a signal with low rank
spectral density matrix within a noise with uncorrelated components.

In the asymptotic regime where M
N
→ γ, Pan et al. (2014) proposed to test

hypothesis H0 when the components of y share the same spectral density.
In this case, the rows of the M × N matrix (y1, . . . ,yN) are independent
and identically distributed under H0. Pan et al. (2014) established a central
limit theorem for linear spectral statistics of the empirical covariance matrix,
and deduced from this a test statistics to check whether H0 holds or not.
We notice that the results of Pan et al. (2014) are valid in the non Gaussian
case.

More results are available in the case where the time series (ym,n)n∈Z,
m ∈ [M ], are temporally white. To test the correlation of the M components,
one can similarly consider sample estimates of the correlation matrix, and test
whether it is close to the identity matrix. Under the asymptotic regime where
M
N
→ γ ∈ (0,+∞), Jiang et al. (2004) showed that the maximum off-diagonal

entry of the sample correlation matrix after proper normalization is also
asymptotically distributed as Gumbel. The techniques used here for proving
(2) are partly based on this paper. Other works such as Mestre and Vallet
(2017) studied the asymptotic distribution of linear spectral statistics of the
correlation matrix, Dette and Dörnemann (2020) focused on the behaviour
of the determinant of the correlation matrix, and Cai et al. (2013) considered
a U-statistic and obtained minimax results over some class of alternatives.
Some other papers also explored various classes of alternative H1, among
which Fan et al. (2019), who showed a phase transition phenomena in the
behaviour of the largest off-diagonal entry of the correlation matrix driven
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by the magnitude of the dependence parameter defined in the alternative
class H1. Lastly, Morales-Jimenez et al. (2018) studied asymptotic first and
second order behaviour of the largest eigenvalues and associated eigenvectors
of the sample correlation matrix under a specific alternative spiked model.

2. Main results

2.1. Assumptions

In all the paper we rely on the following assumptions.

Assumption 1 (Time series). The time series (ym,n)n∈Z, m ≥ 1, are mu-
tually independent, stationary and zero-mean complex Gaussian distributed
2.

For each m ≥ 1, we denote by rm = (rm(u))u∈Z (instead of rm,m) the co-
variance sequence of (ym,n)n∈Z, i.e. rm(u) = E[ym,n+uym,n], and we formulate
the following assumption on (rm)m≥1:

Assumption 2 (Memory). The covariance sequences (rm)m≥1 satisfy the
uniform short memory condition

sup
m≥1

∑
u∈Z

(1 + |u|)|rm(u)| < +∞.

We denote by sm(ν) =
∑

u∈Z rm(u)e−i2πν (instead of sm,m(ν)) the spectral
density of (ym,n)n∈Z at frequency ν ∈ [0, 1]. Assumption 2 of course implies
that the function sm is continously differentiable and that

sup
m≥1

max
ν∈[0,1]

sm(ν) < +∞, sup
m≥1

max
ν∈[0,1]

∣∣∣∣dsmdν
(ν)

∣∣∣∣ < +∞. (5)

Eventually, as the sample spectral coherence of (yi,n)n∈Z and (yj,n)n∈Z involves
a renormalization by the inverse of the estimates of the spectral densities si
and sj, we also need that si, sj do not vanish, which is the purpose of the
following assumption.

2A complex random variable Z is zero-mean complex Gaussian distributed with vari-

ance σ2, denoted as Z ∼ NC(0, σ2), if Re(Z) and Im(Z) are i.i.d. N (0, σ
2

2 ) random
variables.
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Assumption 3 (Non-vanishing spectrum). The spectral densities are uni-
formly bounded away from zero, that is

inf
m≥1

min
ν∈[0,1]

sm(ν) > 0. (6)

By Assumptions 2 and 3, there exist quantities smin and smax such that

0 < smin ≤ inf
m≥1

min
ν∈[0,1]

sm(ν) ≤ sup
m≥1

max
ν∈[0,1]

sm(ν) ≤ smax < +∞. (7)

We now formulate the following assumptions on the growth rate of the quan-
tities N,M,B, which describe the high-dimensional regime considered in this
paper.

Assumption 4 (Asymptotic regime). B and M are functions of N such
that there exist positive constants C1, C2 ∈ (0,+∞) and ρ ∈ (0, 1) such that:

C1N
ρ ≤ B,M ≤ C2N

ρ

and
M

B
:= cN −−−−→

N→+∞
c ∈ (0,+∞).

Notations. Even if the subscript ·N is not always specified, almost all quanti-
ties should be remembered to be dependent on N . Moreover, C represents a
universal constant (i.e. a positive quantity independent of N,M,B), whose
precise value is irrelevant and which may change from one line to another.

2.2. Statement of the result

The main result of this paper, whose proof is deferred to Section 4, is
given in the following theorem.

Theorem 1. Under Assumptions 1 – 3, for any t ∈ R:

P
(

(B + 1) max
(i,j,ν)∈I

|ĉij(ν)|2 ≤ t+ log
N

B + 1
+ log

M(M − 1)

2

)
−−−−→
N→+∞

e−e
−t
.

Thus, Theorem 1 states that max(i,j,ν)∈I |ĉij(ν)|2, atfer proper normal-
ization and centering, converges in distribution to a type I extreme value
distribution, also known as Gumbel distribution. As it will be clear in the
proof, the term log M(M−1)

2
is related to the maximum over (i, j) while the

term log N
B+1

is related to the maximum over ν ∈ G.
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We now illustrate numerically the above asymptotic result. Consider M
independent AR(1) processes, driven by a standard Gaussian white noise,
i.e.

yn :=

 y1,n
...

yM,n

 = θ

 y1,n−1
...

yM,n−1

+

 ε1,n
...

εM,n

 , εm,n
i.i.d.∼ NC(0, 1)

with θ = 0.6, and (N,M) = (20000, 500). The smoothed periodogram es-
timators are computed using B = 1000. We independently draw 10000
samples of the time series (yn)n∈[N ] and compute the associated MSSC
max(i,j,ν)∈IN |ĉij(ν)|2. On Figure 1 are represented the sample cumulative
distribution function (cdf) and the histogram of the MSSC against the Gum-
bel cdf and probability density function (pdf). We indeed observe that the
rescaled distribution of max(i,j,ν)∈IN |ĉij(ν)|2 is close to the Gumbel distribu-
tion.

2 0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0 rescaled sup
i, j,

|cij( )|2

Gumbel cdf

2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Gumbel pdf
rescaled sup

i, j,
|cij( )|2

Figure 1: sample cdf and histogram of the MSSC as defined in Theorem 1 vs Gumbel
distribution.

.

3. Application to testing

3.1. New proposed test statistic

Theorem 1 can be used to design a new independence test statistic with
controlled asymptotic level in the proposed high-dimensional regime.

Define qα the α–quantile of the Gumbel distribution: qα = F−1(α) where

F (x) = exp(− exp(−x)).
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The test statistic T
(MSSC)
N defined by

T
(MSSC)
N = 1

(
max

(i,j,ν)∈I
|ĉij(ν)|2 >

q1−α + log N
B+1

+ log M(M−1)
2

B + 1

)
(8)

satisfies, as a direct consequence of Theorem 1, limN→+∞ P[T
(MSSC)
N = 1] = α

under H0.

3.2. Type I error

In order to test the independence of the signals ((ym,n)n∈Z)m=1,...,M , we

consider the statistic T
(MSSC)
N defined in (8). On Table 1 are presented the

sample type I errors of T
(MSSC)
N with different combinations of sample sizes

and dimensions (ρ = 0.7 and M
B+1

= 0.5), when the nominal significant level
for all the tests is set at α = 0.05, and all statistics are computed from 30000
independent replications. One can see as expected that the type I error of
T

(MSSC)
N does indeed remain near 5% as M increases.

Table 1: Sample type I error at 5%

T
(MSSC)
N

N B M

42 20 10 0.021
316 100 50 0.031
659 180 90 0.037
1044 260 130 0.037
1459 340 170 0.040
1901 420 210 0.042
5623 1000 500 0.048
13374 2000 1000 0.051

3.3. Power

We now compare the power of our new test statistic against other inde-
pendence test statistics which are designed to work in the high-dimensional
regime. We define the Linear Spectral Statistic (LSS) test from Loubaton
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and Rosuel (2021) for any ε > 0 by

T
(LSS)
N = 1

 sup
ν∈[0,1]

∣∣∣ 1
M

tr f(Ĉ(ν))−
∫
R f dµ

(cN )
MP

∣∣∣
N ε(B/N)

> κ1−α

 (9)

where µ
(c)
MP represents the Marcenko-Pastur distribution with parameter c

defined by

dµ
(c)
MP (λ) =

(
1− 1

c

)
+

δ0(dλ) +

√
(λ+ − λ)(λ− λ−)

2πcλ
1[λ−,λ+](λ) dλ

where λ± = (1 ±
√
c)2, (·)+ := max(·, 0), cN := M

B+1
and f is some function

defined on R+ satisfying regularity assumptions (see more details in Loubaton
and Rosuel (2021)). In practice, ε will be taken equal to 0.1. It is proven

in Loubaton and Rosuel (2021) that under H0, T
(LSS)
N → 0 almost surely

in the high-dimensional regime but the exact asymptotic distribution of the
LSS test is unknown. Therefore, the detection threshold κ1−α for this test is

based on a sample quantile of T
(LSS)
N under H0 computed from Monte-Carlo

simulation. For fairness comparison, we also use this procedure for the new
test statistic T

(MSSC)
N . More precisely, we compute the sample (1−α)–quantile

κ1−α of a test statistic T
(LSS)
N from samples under H0, and then reject the null

hypothesis under H1 if T
(LSS)
N > κ1−α. It remains to choose a test function

f , and we again follow Loubaton and Rosuel (2021) by considering

• the Frobenius test T
(FROB)
N when f(x) = (x− 1)2

• the logdet test T
(LOG)
N when f(x) = log x

It remains to define the alternatives. For this, we consider the following
multidimensional AR(1) model:

yn+1 = Ayn + εn (10)

where (εn)n∈Z is a sequence of independent NCM (0, I) distributed random
vectors, and A is a bidiagonal matrix. Three choices of A (A(H0), A(H1,loc),
A(H1,glob)) allows us to define two alternatives:

10



1. H0: for |θ| < 1:

A(H0) =



θ 0 . . . . . . . . . 0
0 θ 0 . . . . . . 0
0 0 θ 0 . . . 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 . . . . . . 0 0 θ


so the signals ((ym,n)n∈Z)m=1,...,M are mutually independent.

2. H1,loc: for |θ| < 1 and β ∈ R:

A(H1,loc) =



θ 0 . . . . . . . . . 0
β θ 0 . . . . . . 0
0 0 θ 0 . . . 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 . . . . . . 0 0 θ


so the couple of time series (1,2) is the unique correlated pair of signals.

3. H1,glob: for |θ| < 1 and β ∈ R:

A(H1,glob) =



θ 0 . . . . . . . . . 0
β θ 0 . . . . . . 0
0 β θ 0 . . . 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 . . . . . . 0 β θ


so all the signals are mutually correlated.

We now fix the value of the parameters involved under the three hypothe-
ses. θ will always be taken equal to 0.5. Under H1,loc, β = 0.1. Concerning
the alternative H1,glob, more care is required to choose β. Indeed, one can
define a measure of total dependence as:

r :=

∫
‖S(ν)− dgS(ν)‖2

F dν∫
‖S(ν)‖2

F dν
=

∑
u∈Z ‖R(u)− dgR(u)‖2

F∑
u∈Z ‖R(u)‖2

F

11



where R(u) := E[yn+uy
∗
n], S(ν) =

∑
u∈Z R(u)e−i2πuν and dg denotes the

diagonal part operator. Clearly, r = 0 under H0, and as r > 0 increases,
the M–dimensional time series become correlated. We also see that for any
fixed value of β, r is increasing with M . It is therefore more desirable to
tune β := β(M) such that r remains constant as M increases. This will
enable our tests to be compared against an alternative which does not become
asymptotically trivial.

The two alternatives H1,loc and H1,glob are useful to measure the perfor-
mance of the independence tests under two different setups. Under H1,loc,
each pair of time series are independent except the pair (y1,n)n∈Z,(y2,n)n∈Z,
whereas under H1,glob each time series has a small correlation with every
other time series.

On Table 2 and Table 3 are presented the sample powers when the type I
error is fixed at 5% and for the considered tests and the two alternatives. The
asymptotic regime is the same as the one considered for Table 1: ρ = 0.7 and
M
B+1

= 0.2. All statistics are computed from 30000 independent replications.
We observe that under H1,glob, with r = 0.01, all the tests asymptotically
detect the alternative, however with different performances. The LSS test
statistics show better power which indicates that they may be more suited to
detect alternative under H1,glob than the MSSC test statistics. Under H1,loc

the results are opposite: the power of T
(MSSC)
N rapidly increases to 1 as M

increases. These results are not surprising since the MSSC test statistic is
designed to detect peaks in the off-diagonal entries of Ĉ(ν) which is exactly
the class of alternative considered in H1,loc. However, when the correlations
are spread among all pairs of time series under H1,glob, the test statistics

based on the global behaviour of the eigenvalues of Ĉ(ν) seem more relevant.
On Figure 2 are represented the ROC for each test under both alterna-

tives. We observe that T
(FROB)
N and T

(LOG)
N have similar performance and

outperform T
(MSSC)
N for the alternative H1,glob, while T

(MSSC)
N has better per-

formance for H1,loc.

4. Proof of Theorem 1

We will detail in this section the main steps to prove Theorem 1, while
some details will be left in the Appendix.

12



Table 2: Power comparison under H1 global, type I error = 5%

T
(FROB)
N T

(LOG)
N T

(MSSC)
N

N M B

42 10 20 0.050 0.049 0.052
316 50 100 0.036 0.042 0.067
659 90 180 0.067 0.065 0.086
1044 130 260 0.142 0.122 0.133
1459 170 340 0.339 0.255 0.214
1901 210 420 0.601 0.462 0.328
2364 250 500 0.836 0.682 0.503
2846 290 580 0.960 0.852 0.672

Table 3: Power comparison under H1 local, type I error = 5%

T
(FROB)
N T

(LOG)
N T

(MSSC)
N

N M B

42 10 20 0.049 0.049 0.061
316 50 100 0.038 0.044 0.352
659 90 180 0.038 0.041 0.881
1044 130 260 0.034 0.038 0.999
1459 170 340 0.034 0.038 1.000
1901 210 420 0.035 0.039 1.000
2364 250 500 0.031 0.039 1.000
2846 290 580 0.032 0.036 1.000

4.1. General approach

First, we notice that the frequency smoothed estimate ŝi,j(ν) defined in
(1) can be written as

ŝij(ν) =
1

B + 1
ξyj(ν)∗ξyi(ν) (11)

where

ξyi(ν) =

(
ξyi

(
ν − B

2N

)
, . . . , ξyi

(
ν +

B

2N

))T
.

This is a sesquilinear form of the finite Fourier transform of the M time series
samples (yi,1, . . . , yi,N)i∈[M ]. To handle the statistical dependence between the

13
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Figure 2: ROC associated to each test under H(glob)
1 with r = 0.01 (left) and H(loc)

1 with
β = 0.1 (right) when (N,M,B) = (2846, 290, 580))

.

components of ξyi(ν), we use the well-known Bartlett decomposition (see for
instance Walker (1965)) whose procedure is described hereafter.

From Assumptions 2 and 3, the spectral distribution of (ym,n)n∈Z is ab-
solutely continuous with density sm being uniformly bounded and bounded
away from 0. Therefore, from Wold’s Theorem (Brockwell and Davis, 2006,
Th. 5.7.1, Th. 5.7.2), each time series (ym,n)n∈Z admits a causal and
causally invertible linear representation in terms of its normalized innova-
tion sequence:

ym,n =
+∞∑
k=0

am,kεm,n−k, (12)

where (ε1,k)k∈Z, . . . , (εM,k)k∈Z are mutually independent sequences ofNC(0, 1)
i.i.d. random variables, and (a1,k)k∈N, . . . , (aM,k)k∈N ∈ `2(N) such that if

hm(ν) =
+∞∑
k=0

am,ke
−2iπkν (13)

then |hm(ν)|2 = sm(ν) and hm(ν) coincides with the outer causal spectral
factor of sm(ν). Define now s̃ij(ν), an approximation of ŝij(ν), as:

s̃ij(ν) =
1

B + 1

B/2∑
b=−B/2

hi

(
ν +

b

N

)
hj

(
ν +

b

N

)
ξεi

(
ν +

b

N

)
ξεj

(
ν +

b

N

)
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or equivalently

s̃ij(ν) = ξεj(ν)∗
Πij(ν)

B + 1
ξεi(ν) (14)

where

Πij(ν) = dg

(
hi

(
ν +

b

N

)
hj

(
ν +

b

N

))
b=−B/2,...,B/2

(15)

and

ξεi(ν) =

(
ξεi

(
ν − B

2N

)
, . . . , ξεi

(
ν +

B

2N

))T
.

Instead of working directly with |ĉij(ν)|2 =
|ŝij(ν)|2
ŝi(ν)ŝj(ν)

, it turns out that it is

more convenient to show the limiting Gumbel distribution for
|s̃ij(ν)|2
σ2
ij(ν)

where

σ2
ij(ν) =

1

B + 1

B/2∑
b=−B/2

∣∣∣∣hi(ν +
b

N

)∣∣∣∣2 ∣∣∣∣hj (ν +
b

N

)∣∣∣∣2

=
1

B + 1

B/2∑
b=−B/2

si

(
ν +

b

N

)
sj

(
ν +

b

N

)
:=

tr Σij(ν)

B + 1
(16)

and where

Σij(ν) := Π∗ij(ν)Πij(ν)

= dg

(∣∣∣∣hi(ν +
b

N

)∣∣∣∣2 ∣∣∣∣hj (ν +
b

N

)∣∣∣∣2 , b = −B
2
, . . . ,

B

2

)
. (17)

This is the aim of Proposition 1 below.

Proposition 1 (Gumbel limit for max(i,j,ν)∈I |s̃ij(ν)|2). Under Assumptions
1 – 3, for any t ∈ R, we have

P
(

max
(i,j,ν)∈I

(B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

≤ t+ log
N

B + 1
+ log

M(M − 1)

2

)
−−−−→
N→+∞

e−e
−t
.

(18)
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Once equipped with Proposition 1, it remains then to show that

max(i,j,ν)∈I
|s̃ij(ν)|2
σ2
ij(ν)

is close enough from max(i,j,ν)∈I |ĉij(ν)|2 to prove that these

quantities have the same limiting distribution. This result is given by the
following Proposition.

Proposition 2. Under Assumptions 1 – 3, as N →∞,

max
(i,j,ν)∈I

(B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

− max
(i,j,ν)∈I

(B + 1)|ĉij(ν)|2 = oP (1).

As Theorem 1 is directly obtained by Proposition 1, Proposition 2 and an
application of Slutsky’s lemma, the two remaining subsections are devoted
to the proofs of Proposition 1 and Proposition 2.

4.2. Proof of Proposition 1

To prove Proposition 1, the main tool is the Lemma A.4 from Jiang et al.
(2004), which is a special case of Poisson approximation from Arratia et al.
(1989). We rewrite it here for the sake of completeness.

Lemma 2. Let (Xα)α∈I be a finite collection of Bernoulli random variables,
and for each α ∈ I, let Iα ⊂ I such that α ∈ Iα. Then,∣∣∣∣∣P

(∑
α∈I

Xα = 0

)
− exp

(
−
∑
α∈I

P(Xα = 1)

)∣∣∣∣∣ ≤ ∆1 + ∆2 + ∆3

where

∆1 =
∑
α∈I

∑
β∈Iα

P (Xα = 1) P (Xβ = 1)

∆2 =
∑
α∈I

∑
β∈Iα\{α}

P (Xα = 1, Xβ = 1)

∆3 =
∑
α∈I

E
∣∣∣P(Xα = 1| (Xβ)β∈I\Iα

)
− P(Xα = 1)

∣∣∣
In particular, if for each α ∈ I, Xα is independent of {Xβ : β ∈ I \ Iα},
then ∆3 = 0.

Lemma 2 is the keystone for the proof of Proposition 1, and is a standard
tool for analyzing distributions of maxima of dependent random variables.
We now prove Proposition 1.
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Proof. We start by proving (18). Define

tN =

√
x+ log

M(M − 1)

2
+ log

N

B + 1
(19)

and for (i, j, ν) ∈ I (recall that I is defined in (3), and that it depends on N ,
but in order to avoid cumbersome notations we do not recall this dependency)
the Bernoulli random variables Xij(ν) as

Xij(ν) := 1

(
(B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N

)
. (20)

Define the set I(i,j,ν)

I(i,j,ν) = {(i′, j′, ν) : 1 ≤ i′ < j′ ≤M, i = i′ or j = j′}. (21)

From (14) and under Assumption 1, if (i′, j′, ν ′) ∈ I\I(i,j,ν), then s̃i′j′(ν
′) is

independent from s̃ij(ν) since we have either

(1) i′ 6= i, j′ 6= j, ν ′ = ν;

(2) i′ = i or j′ = j, and ν ′ 6= ν (implying |ν − ν ′| > B
N

by assumption), in

which case
(
ξεi′ (ν

′), ξεj′ (ν
′)
)

is independent from
(
ξεi(ν), ξεj(ν)

)
.

From the definition of Xij(ν) in (20),

P
(

(B + 1) max
(i,j,ν)∈I

|s̃ij(ν)|2

σ2
ij(ν)

≤ t2N

)
= P

 ∑
(i,j,ν)∈I

Xij(ν) = 0


which can be estimated by Lemma 2 as:∣∣∣∣∣∣P

 ∑
(i,j,ν)∈I

Xij(ν) = 0

− e−λ
∣∣∣∣∣∣ ≤ ∆1 + ∆2 + ∆3

where

λ =
∑

(i,j,ν)∈I

P (Xij(ν) = 1) =
∑

(i,j,ν)∈I

P
(

(B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

> t2N

)

17



and

∆1 =
∑

(i,j,ν)∈I

∑
(i′,j′,ν)∈I(i,j,ν)

P
(

(B + 1)
|s̃i,j(ν)|2

σ2
ij(ν)

> t2N

)
P

(
(B + 1)

|s̃i′j′(ν)|2

σ2
i′j′(ν)

> t2N

)

(22)

∆2 =
∑

(i,j,ν)∈I

∑
(i′,j′,ν)∈I(i,j,ν)

(i′,j′) 6=(i,j)

P

(
(B + 1)

|s̃i,j(ν)|2

σ2
ij(ν)

> t2N , (B + 1)
|s̃i′j′(ν)|2

σ2
i′j′(ν)

> t2N

)

(23)

∆3 =
∑

(i,j,ν)∈I

E
∣∣∣∣P((B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N | (s̃i′j′(ν ′))(i′,j′,ν′)∈I\I(i,j,ν)

)

−P
(

(B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

> t2N

)∣∣∣∣ . (24)

We now have to control the four quantities λ, ∆1, ∆2 and ∆3, which requires
studying moderate deviations results for

P
(

(B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

> t2N

)
as well as

P

(
(B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N , (B + 1)
|s̃i′j′(ν)|2

σ2
i′j′(ν)

> t2N

)

for all (i′, j′, ν) ∈ I(i,j,ν). The following Proposition 3, proved in Appendix
C, provides exactly this.

Proposition 3. Under Assumptions 1 – 3, there exists a constant η > 0
such that for any C > 0, we have

max
t∈[0,CBη ]

max
(i,j,ν)∈I

∣∣∣∣P((B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

> t2
)
et

2 − 1

∣∣∣∣ −−−→N→∞
0 (25)

18



and

max
t,s∈[0,CBη ]

max
(i,j,ν)∈I

(i′,j′,ν)∈I(i,j,ν)

∣∣∣∣∣P
(

(B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

> t2, (B + 1)
|s̃i′j′(ν)|2

σ2
i′j′(ν)

> s2

)

× et2+s2 − 1

∣∣∣∣∣ −−−→N→∞
0. (26)

First, concerning exp(−λ), since tN as defined in (19) is O(logN), one
can use Proposition 3 to get

exp (−λ) = exp

− ∑
(i,j,ν)∈I

P
(

(B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

> t2N

)
= exp

(
− N

B + 1

M(M − 1)

2
e−t

2
N (1 + o(1))

)
−−−→
N→∞

exp (− exp(−x)) .

We now turn to the control of ∆1, ∆2, and ∆3. Regarding ∆3, since under As-
sumption 1 the random variables s̃ij(ν) and s̃i′j′(ν

′) for (i′, j′, ν ′) ∈ I\I(i,j,ν)

are independent, we clearly have ∆3 = 0. Consider now (22) and (23). The
aim is to show that ∆1 = o(1) and ∆2 = o(1) when tN is defined by (19).
Using the moderate deviation result (25) from Proposition 3, and recalling
that C represents a universal constant independent of N whose value can
change from one line to another, we get:

∆1 ≤ |I|︸︷︷︸
O(N

B
M2)

max
(i,j,ν)∈I

|I(i,j,ν)|︸ ︷︷ ︸
O(M)

max
(i,j,ν)∈I

P
(

(B + 1)
|s̃i,j(ν)|2

σi,j(ν)2
> t2N

)2

≤ C
N

B
M3 e−2t2N︸ ︷︷ ︸

O( 1
M4

B2

N2 )

max
(i,j,ν)∈I

(
P
[
(B + 1)

|s̃i,j(ν)|2

σi,j(ν)2
> t2N

]
et

2
N

)2

︸ ︷︷ ︸
=1+o(1)

= O
(

1

N

)
.
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∆2 is handled similarly with equation (26) from Proposition 3:

∆2 =
∑

(i,j,ν)∈I

∑
(i′,j′,ν)∈I(i,j,ν)

P

(
(B + 1)

|s̃ij(ν)|2

σ2
ij(ν)

> t2N , (B + 1)
|s̃i′j′(ν)|2

σ2
i′j′(ν)

> t2N

)
≤ |I| max

(i,j,ν)∈I
|I(i,j,ν)| e−2t2N

× max
(i,j,ν)∈I

max
(i′,j′,ν)∈I(i,j,ν)

P

(
(B + 1)

|s̃i,j(ν)|2

σi,j(ν)2
> t2N , (B + 1)

|s̃i′j′(ν)|2

σ2
i′j′(ν)

> t2N

)
e2t2N︸ ︷︷ ︸

=1+o(1)

= O
(

1

N

)
.

The proof of (18) is complete.

4.3. Proof of Proposition 2

To prove Proposition 2, ie. the fact that max(i,j,ν)∈I
|ŝij(ν)|2
ŝi(ν)ŝj(ν)

and

max(i,j,ν)∈I
|s̃ij(ν)|2
σ2
ij(ν)

are close enough in probability, we work separately on

the numerator and the denominator. This constitutes the statement of the
two following propositions.

Proposition 4 (Change of numerator). Under Assumptions 1 – 3, there
exists δ > 0 such that as N →∞,

√
B + 1 max

(i,j,ν)∈I
|ŝij(ν)− s̃ij(ν)| = OP (N−δ). (27)

The proof is deferred to Appendix B. A consequence of Proposition 4
and Proposition 1 is that
√
B + 1 max

(i,j,ν)∈I
|ŝij(ν)|

≤
√
B + 1 max

(i,j,ν)∈I
|s̃i,j(ν)|+

√
B + 1 max

(i,j,ν)∈I
|ŝij(ν)− s̃ij(ν)|

= OP
(√

logN
)
. (28)

Proposition 5 (Change of denominator). Under Assumption 2, for any
ε > 0, as N →∞,

max
(i,j,ν)∈I

∣∣ŝi(ν)ŝj(ν)− σ2
ij(ν)

∣∣ = OP
(
B

N
+

N ε

√
B

)
. (29)
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Moreover,

0 < inf
N≥1

min
(i,j,ν)∈I

σ2
ij(ν) ≤ sup

N≥1
max

(i,j,ν)∈I
σ2
ij(ν) < +∞ (30)

and

max
i∈[M ]

max
ν∈G

1

ŝi(ν)
= OP (1), max

i∈[M ]
max
ν∈G

ŝi(ν) = OP (1). (31)

The proof is deferred to Appendix A. We recall that for any sequences
(an) and (bn), the following inequality holds:∣∣∣∣sup

n
an − sup

n
bn

∣∣∣∣ ≤ sup
n
|an − bn|.

Therefore, to show that Proposition 2 holds, it is enough to show that

max
(i,j,ν)∈I

∣∣∣∣(B + 1)
|s̃ij(ν)|2

σ2
ij(ν)

− (B + 1)|ĉij(ν)|2
∣∣∣∣ = oP (1).

This result could be proved by writing the following decomposition:

(B + 1) max
(i,j,ν)∈I

∣∣∣∣ |s̃ij(ν)|2

σ2
ij(ν)

− |ŝij(ν)|2

ŝi(ν)ŝj(ν)

∣∣∣∣ ≤ Ψ3(Ψ1 + Ψ2).

where

Ψ1 := (B + 1) max
(i,j,ν)∈I

∣∣|ŝij(ν)|2 − |s̃ij(ν)|2
∣∣ ŝi(ν)ŝj(ν)

Ψ2 := (B + 1) max
(i,j,ν)∈I

|ŝij(ν)|2|ŝi(ν)ŝj(ν)− σ2
ij(ν)|

Ψ3 := max
(i,j,ν)∈I

1

ŝi(ν)ŝj(ν)σ2
ij(ν)

.

It is clear by (18) that

max
(i,j,ν)∈I

(B + 1)|s̃ij(ν)|2 = OP (logN) .

Combining this with Proposition 5 and equation (27) from Proposition 4,
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there exists δ > 0 such that

(B + 1) max
(i,j,ν)∈I

∣∣|ŝij(ν)|2 − |s̃ij(ν)|2
∣∣ ≤

√
B + 1 max

(i,j,ν)∈I
(|ŝij(ν)|+ |s̃ij(ν)|)︸ ︷︷ ︸

=OP (
√

logN)

×
√
B + 1 max

(i,j,ν)∈I
||ŝij(ν)| − |s̃ij(ν)||︸ ︷︷ ︸

=OP (N−δ)

which is OP (
√

logNN−δ). Using (31), this implies that

Ψ1 = OP
(√

logNN−δ
)
.

Similarly, using Proposition 5, for any ε > 0,

Ψ2 = OP
(

logN

(
B

N
+

N ε

√
B

))
Ψ3 = OP (1).

Combining the estimates of Ψ1, Ψ2 and Ψ3 we get that for any ε > 0:

(B + 1) max
(i,j,ν)∈I

∣∣∣∣ |s̃ij(ν)|2

σ2
ij(ν)

− |ŝij(ν)|2

ŝi(ν)ŝj(ν)

∣∣∣∣ =

OP
(
N−δ

√
logN + logN

(
B

N
+

N ε

√
B

))
.

This quantity is oP (1) if Nε
√
B

= o(1) which is satisfied by choosing ε < ρ
2

from

Assumption (4).

Appendix A. Proof of Proposition 5

Before proving (29), the main result of Proposition 5, we focus first on
proving (30) and (31). Concerning (30), recall that σ2

ij(ν) defined in (16) is
equal to:

σ2
ij(ν) =

1

B + 1

B/2∑
b=−B/2

si

(
ν +

b

N

)
sj

(
ν +

b

N

)
. (A.1)
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By Assumption 2, it is clear that (30) holds. We now focus on proving (31).
Since by Assumption 2 and Assumption 3 the true spectral densities si(ν)
are far from 0 and +∞, the same result should also hold for the estimators
ŝi(ν). More precisely, we prove the following lemma.

Lemma 3. Under Assumption 2,

max
i∈[M ]

max
ν∈F
|Eŝi(ν)− si(ν)| = O

(
B

N

)
(A.2)

Moreover, under Assumption 1 and Assumption 2, for any ε > 0, there
exist γ > 0 and N0(ε) ∈ N such that:

P
(

max
i∈[M ]

max
ν∈F
|ŝi(ν)− E[ŝi(ν)]| > N ε 1√

B

)
≤ exp (−Nγ) (A.3)

for N > N0(ε).

Proof. These results are close to those proved in Lemma A.2 and Lemma
A.3. from Loubaton and Rosuel (2021). We will therefore closely follow
their proofs. We start with the bias. By the definition (11) of ŝi(ν):

|Eŝi(ν)− si(ν)| =

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

E
∣∣∣∣ξyi (ν +

b

N

)∣∣∣∣2 − si(ν)

∣∣∣∣∣∣ .
Inserting si(ν + b

N
), one can write:

|Eŝi(ν)− si(ν)| ≤

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

(
E
∣∣∣∣ξyi (ν +

b

N

)∣∣∣∣2 − si(ν +
b

N

))∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

(
si

(
ν +

b

N

)
− si(ν)

)∣∣∣∣∣∣ .
(Loubaton and Rosuel, 2021, Lemma A.1) provides the following control

for the first term of the right-hand side under Assumption 2:

max
ν∈F

max
i∈[M ]

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

(
E
∣∣∣∣ξyi (ν +

b

N

)∣∣∣∣2 − si(ν +
b

N

))∣∣∣∣∣∣ = O
(

1

N

)
.

(A.4)
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Moreover, by Assumption 2, a Taylor expansion of si around ν+ b
N

, provides
the existence of a quantity νb such that:

si

(
ν +

b

N

)
= si(ν) +

b

N
s′i(νb)

where by Assumption 2, supi≥1 supν∈[0,1] |s′i(ν)| < +∞. Therefore, it holds
that, uniformly in ν ∈ F and i ∈ [M ]:

max
ν∈F

max
i∈[M ]

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

(
si

(
ν +

b

N

)
− si(ν)

)∣∣∣∣∣∣
= max

ν∈F
max
i∈[M ]

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

b

N
s′i(νb)

∣∣∣∣∣∣ = O
(
B

N

)
. (A.5)

Combining the estimations (A.4) and (A.5), one get:

max
i∈[M ]

max
ν∈F
|Eŝi(ν)− si(ν)| = O

(
1

N
+
B

N

)
= O

(
B

N

)
which is the desired result.

The second part of the lemma is an extension of a similar result also
proved in (Loubaton and Rosuel, 2021, Lemma A.3) (see also similar results
in Bentkus and Rudzkis (1983)). Under Assumption 1 and Assumption 2,
they have shown that for any ν ∈ [0, 1] and for any ε > 0, there exists γ > 0
such that:

P
(

max
i∈[M ]

|ŝi(ν)− E[ŝi(ν)]| > N ε

√
B

)
≤ exp−Nγ

for large enough N > N0(ε). It remains to extend this concentration result
to handle the uniformity over ν ∈ F . This is done easily by the union
bound.

We can now prove (31). For any A > 0, inserting E[ŝi(ν)] and si(ν) we
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can write:

P
(

max
i∈[M ]

max
ν∈F

ŝi(ν) > A

)
= P

(
max
i∈[M ]

max
ν∈F
|ŝi(ν)− E[ŝi(ν)] + E[ŝi(ν)]− si(ν) + si(ν)| > A

)
≤ P

(
max
i∈[M ]

max
ν∈F
|ŝi(ν)− E[ŝi(ν)])

> A−max
i∈[M ]

max
ν∈F

si(ν)−max
i∈[M ]

max
ν∈F
|E[ŝi(ν)]− si(ν)|

)
.

By Lemma 3 equation (A.2) and Assumption 2, for N large enough:

A−max
i∈[M ]

max
ν∈F

si(ν)−max
i∈[M ]

max
ν∈F
|E[ŝi(ν)]− si(ν)| ≥ A

2
.

The deviation result (A.3) from Lemma 4 eventually provides:

P
(

max
i∈[M ]

max
ν∈F

ŝi(ν) > A

)
≤ P

(
max
i∈[M ]

max
ν∈F
|ŝi(ν)− E[ŝi(ν)]| > A

2

)
−−−−→
N→+∞

0.

The proof that maxi∈[M ] maxν∈F
1

ŝi(ν)
= OP (1) is done similarly by consider-

ing

P
(

max
i∈[M ]

max
ν∈F

1

ŝi(ν)
> A

)
.

We now focus on (29), and consider the following decomposition:

max
(i,j,ν)∈I

∣∣ŝi(ν)ŝj(ν)− σ2
ij(ν)

∣∣ ≤ max
(i,j,ν)∈I

|ŝi(ν)ŝj(ν)− si(ν)sj(ν)|+

max
(i,j,ν)∈I

∣∣si(ν)sj(ν)− σ2
ij(ν)

∣∣ .
The following two lemmas bound each term of the right hand side, and lead
to (29).

Lemma 4. Under Assumption 2, for any ε > 0, as N →∞,

max
(i,j,ν)∈I

|ŝi(ν)ŝj(ν)− si(ν)sj(ν)| = OP
(
B

N
+

N ε

√
B

)
.
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Proof. Write

max
(i,j,ν)∈I

|ŝi(ν)ŝj(ν)− si(ν)sj(ν)|

≤ max
i∈[M ]

max
ν∈F
|ŝi(ν)− si(ν)|︸ ︷︷ ︸

=OP (B
N

+ Nε√
B

)

max
j∈[M ]

max
ν∈F

ŝj(ν)︸ ︷︷ ︸
=OP (1)

+ max
i∈[M ]

max
ν∈F

si(ν)︸ ︷︷ ︸
=O(1)

max
j∈[M ]

max
ν∈F
|ŝj(ν)− sj(ν)|︸ ︷︷ ︸

=OP (B
N

+ Nε√
B

)

for any ε > 0, where each estimate comes from Lemma 3 and Assumption
2.

Lemma 5. Under Assumption 2, as N →∞,

max
(i,j,ν)∈I

∣∣σ2
ij(ν)− si(ν)sj(ν)

∣∣ = O

(
B

N

)
.

Proof. By Assumption 2, the applications ν 7→ si(ν) are C1, so by Taylor
expansion of si around ν + b

N
, there exist frequencies νi,b ∈ [ν, ν + b/N ] such

that:

si

(
ν +

b

N

)
= si(ν) +

b

N
s′i(νi,b)

where si(ν) and s′i(νi,b) satisfies:

sup
i≥1

max
ν∈[0,1]

si(ν) < +∞, sup
i≥1

max
ν∈[0,1]

|s′i(ν)| < +∞

Recall the expression (A.1) of σ2
ij(ν), and write:∣∣σ2

ij(ν)− si(ν)sj(ν)
∣∣

=
1

B + 1

B/2∑
b=−B/2


(
si

(
ν +

b

N

)
− si(ν)

)
︸ ︷︷ ︸

=O(B/N)

sj

(
ν +

b

N

)
︸ ︷︷ ︸

=O(1)

+

si(ν)︸︷︷︸
=O(1)

(
sj

(
ν +

b

N

)
− sj(ν)

)
︸ ︷︷ ︸

=O(B/N)


26



where each bound above is uniform over (i, j, ν) ∈ I.

Appendix B. Proof of Proposition 4

To prove Proposition 4, we need the three following lemmas (Lemma 6,
Lemma 7 and Lemma 8), which are exactly or slight modifications of results
from Walker (1965). We recall that according to (14), s̃ij(ν) can be expressed
as the following sesquilinear form

s̃ij(ν) = ξεj(ν)∗
Πij(ν)

B + 1
ξεi(ν),

where the random variables (εj,n)j∈[M ]
n∈[N ]

are independent and indentically dis-

tributed as NC(0, 1). For the remainder, we denote for all j ∈ [M ] by IN,εj(ν)
the periodogram of (εj,n)n∈[N ] at frequency ν, i.e.

IN,εj(ν) =
∣∣ξεj(ν)

∣∣2 .
The two following lemmas provide controls for the maximum of IN,εj(ν) over
ν and j.

Lemma 6. It holds that

E
[

max
j∈[M ]

max
ν∈F

IN,εj(ν)

]
= O (logN + logM) . (B.1)

Proof. By independence and Gaussianity of the observations from the time
series εj, it is well known that the random variables (IN,εj(ν)) for ν ∈ F and
j ≥ 1 are independent exponential E(1) random variables. Therefore, for any
x ≥ 0:

P
(

max
j∈[M ]

max
ν∈F

IN,εj(ν) ≤ x

)
= (1− e−x)MN .
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Using the change of variable y = 1− e−x:

E
[

max
j∈[M ]

max
ν∈F

IN,εj(ν)

]
=

∫ +∞

0

P
(

max
j∈[M ]

max
ν∈F

IN,εj(ν) > x

)
dx

=

∫ +∞

0

(1− (1− e−x)MN) dx

=

∫ 1

0

1− yMN

1− y
dy

=
MN−1∑
r=0

1

r + 1

= O (logM + logN) .

This proves (B.1).

Under Assumption 4, (B.1) simply becomes:

E
[

max
j∈[M ]

max
ν∈F

IN,εj(ν)

]
= O (logN) (B.2)

The following lemma is from (Walker, 1965, Lemma 1) that we rewrite
here for the sake of completeness. It allows to extend a control from
maxν∈F IN,εj(ν) to maxν∈[0,1] IN,εj(ν).

Lemma 7. There exists a universal constant C such that:

max
j∈[M ]

max
ν∈[0,1]

IN,εj(ν) ≤ C logN max
j∈[M ]

max
ν∈F

IN,εj(ν). (B.3)

A direct consequence of Lemma 7 used in Lemma 6 is that

E
[

max
j∈[M ]

max
ν∈[0,1]

IN,εj(ν)

]
= O (logN(logN + logM)) . (B.4)

The main argument in the proof of Proposition 4 is the following result.

Lemma 8. Define

RN,j(ν) =
∣∣ξyj(ν)− hj(ν)ξεj(ν)

∣∣ . (B.5)

Under Assumptions 1–2, for any 0 < δ < 1
2
,

max
ν∈F

max
j∈[M ]

RN,j(ν) = OP (N−δ). (B.6)
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Proof. We closely follow the proof of Theorem 2b from Walker (1965). To
prove (B.6), the Markov inequality shows that it is sufficient to prove that
for any δ < 1/2,

E
[
max
ν∈F

max
j∈[M ]

RN,j(ν)

]
= O(N−δ).

We use the linear causal representation (12) of yj to write

ξyj(ν) =
1√
N

N∑
n=1

yj,ne
−2iπ(n−1)ν

=
1√
N

N∑
n=1

(
+∞∑
u=0

aj,uεj,n−u

)
e−2iπ(n−1)ν .

Since almost surely, for all j ∈ [M ], n ∈ [N ], (aj,uεj,n−u)u≥0 ∈ `
2(N), we can

switch the order of summation and make the change of variable v = n−u to
get

ξyj(ν) =
1√
N

+∞∑
u=0

aj,ue
−2iπuν

N−u∑
v=1−u

εj,ve
−2iπ(v−1)ν .

Define

ZN,j,u(ν) =

(
N−u∑
v=1−u

−
N∑
v=1

)
εj,ve

−2iπ(v−1)ν (B.7)

so that RN,j(ν) can be rewritten as:

RN,j(ν) =

∣∣∣∣∣ 1√
N

+∞∑
u=0

aj,ue
−2iπuνZN,j,u(ν)

∣∣∣∣∣ (B.8)

on which one can take the supremum over j ∈ [M ] and ν ∈ F on each side
and arrive at the following inequality:

max
j∈[M ]

max
ν∈F

RN,j(ν) ≤ 1√
N

max
j∈[M ]

+∞∑
u=0

|aj,u|max
ν∈F
|ZN,j,u(ν)|

where the right hand side is also bounded by:

max
j∈[M ]

max
ν∈F

RN,j(ν) ≤ 1√
N

max
j1∈[M ]

+∞∑
u=0

|aj1,u| max
j2∈[M ],ν∈F

|ZN,j2,u(ν)|.
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Note that for u = 0, maxj2∈[M ],ν∈F |ZN,j2,u(ν)| = 0, so the sum in fact can be
written as starting from 1. For any γ < 1, the Cauchy-Schwarz inequality
provides:

1√
N

max
j1∈[M ]

+∞∑
u=1

|aj1,u| max
j2∈[M ],ν∈F

|ZN,j2,u(ν)|

≤ 1√
N

√√√√max
j1∈[M ]

+∞∑
u=1

u2γ|aj1,u|2

√√√√+∞∑
u=1

1

u2γ
max

j2∈[M ],ν∈FN
|ZN,j2,u(ν)|2.

Taking the expectation (and an application of the Jensen inequality to ex-
change the expectation and the square root), we get the following bound:

E
[

max
j∈[M ]

max
ν∈F

RN,j(ν)

]

≤ 1√
N

√√√√max
j1∈[M ]

+∞∑
u=1

u2γ|aj1,u|2

√√√√E

[
+∞∑
u=1

1

u2γ
max

j2∈[M ],ν∈F
|ZN,j2,u(ν)|2

]
. (B.9)

Consider the first term in the right hand side of (B.9). We see that we need
to transfer the uniform sumability property of the sequences (rj,u)u∈N from
Assumption 2 to a sumability property on the sequences (aj,u)u∈N uniformly
over the j ≥ 1 times series. Hopefully, Lemma D.1 from Loubaton and
Mestre (2020), a generalization of the Wiener-Lévy theorem, provides an
answer that we rewrite here for sake of completeness.

Lemma 9. (Lemma D.1, Loubaton and Mestre (2020)) Consider a function
F (z) holomorphic in a neighbourhood of the interval [smin, smax] where smin

and smax are defined by (7). Under Assumption 2, for each γ < 1,

sup
j≥1

∑
u∈Z

(1 + |u|)γ
∣∣∣∣∫ 1

0

(F ◦ sj)(ν)e2iπνu du

∣∣∣∣ < +∞.

We now show how Lemma 9 can be used to find a sumability property
on the sequences (aj,u)u∈N uniformly in j ≥1. Take F (z) = log z, which is
holomorphic on a neighborhood of [smin, smax], so for any γ < 1,

sup
j≥1

∑
u∈Z

(1 + |u|)γ|cj,u| < +∞ (B.10)

30



where

cj,u =

∫ 1

0

log(sj(ν))e2iπνu du.

It is well known (see (Rudin, 1987, Theorem 17.17) and Loubaton and Mestre
(2020)) that the sequence cj,u satisfies

hj(ν) = exp

(
cj,0
2

+
+∞∑
u=1

cj,ue
−2iπνu

)
.

where we recall that h(ν) =
∑

u∈N aj,ue
−2iπuν coincides with the outer spectral

factor of sj(ν) = |hj(ν)|2. We therefore see that the sequence of coefficients
(aj,u)u∈N are related to (cj,u)u∈N, and it can be shown (equation (D.11) in
Loubaton and Mestre (2020)) that for each γ < 1,

sup
j≥1

∑
u≥0

(1 + |u|)γ|aj,u| ≤ sup
j≥1

exp

(∑
u≥0

(1 + |u|)γ|cj,u|

)

which by (B.10) provides for any γ < 1:

sup
j≥1

∑
u≥0

(1 + |u|)γ|aj,u| < +∞. (B.11)

Returning to (B.9), and using (B.11), we find

sup
j≥1

+∞∑
u=1

|u|2γ|aj,u|2 ≤ sup
j≥1

(∑
u≥0

|u|γ|aj,u|

)2

< +∞.

Consider now the second term in (B.9). For each u ∈ N, the quantity
u−2γ supj2∈[M ],ν∈FN |ZN,j2,u(ν)|2 is positive so the monotone convergence the-
orem allows to exchange the sum and the expectation.

E

[
+∞∑
u=1

1

u2γ
max

j2∈[M ],ν∈F
|ZN,j2,u(ν)|2

]
=

+∞∑
u=1

1

u2γ
E
[

max
j2∈[M ],ν∈F

|ZN,j2,u(ν)|2
]

so that equation (B.9) becomes

E
[

max
j∈[M ]

max
ν∈FN

RN,j(ν)

]
≤ C√

N

√√√√+∞∑
u=1

1

u2γ
E
[

max
j2∈[M ],ν∈F

|ZN,j2,u(ν)|2
]

(B.12)
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for some universal constant C < +∞. To end the proof of Lemma 8, it
remains to show that for any η > 0,√√√√+∞∑

u=1

1

u2γ
E
[

max
j2∈[M ],ν∈FN

|ZN,j2,u(ν)|2
]

= O(Nη)

which is equivalent to show that for any η > 0:

+∞∑
u=1

1

u2γ
E
[

max
j2∈[M ],ν∈F

|ZN,j2,u(ν)|2
]

= O(Nη). (B.13)

We now see that the behaviour of E[maxj∈[M ] maxν∈FN RN,j(ν)] is governed
by E[maxj2∈[M ],ν∈FN |ZN,j2,u(ν)|2], so it remains to study this quantity. By
the triangle inequality:

|ZN,j,u(ν)| ≤


∣∣∑0

v=1−u εj,ve
−2iπ(v−1)ν

∣∣+
∣∣∣∑N

v=N−u+1 εj,ve
−2iπ(v−1)ν

∣∣∣ if u < N∣∣∣∑N−u
v=1−u εj,ve

−2iπ(v−1)ν
∣∣∣+
∣∣∣∑N

v=1 εj,ve
−2iπ(v−1)ν

∣∣∣ if u ≥ N

and using the inequality |a+ b|2 ≤ 2(|a|2 + |b|2):

|ZN,j,u(ν)|2 ≤
2

(∣∣∑0
v=1−u εj,ve

−2iπ(v−1)ν
∣∣2 +

∣∣∣∑N
v=N−u+1 εj,ve

−2iπ(v−1)ν
∣∣∣2) if u < N

2

(∣∣∣∑N−u
v=1−u εj,ve

−2iπ(v−1)ν
∣∣∣2 +

∣∣∣∑N
v=1 εj,ve

−2iπ(v−1)ν
∣∣∣2) if u ≥ N.

(B.14)

In the case u ≥ N , the two sums can be recognized as N times the peri-
odogram estimator which we defined previously as IN,εj(ν). Using the esti-
mation (B.2) from Lemma 6:

E

max
j∈[M ]

max
ν∈F

∣∣∣∣∣
N−u∑
v=1−u

εj,ve
−2iπ(v−1)ν

∣∣∣∣∣
2
 = NE

[
max
j∈[M ]

max
ν∈F

IN,εj(ν)

]
= O (N logN) . (B.15)

The other sum in the case u ≥ N is similar.
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For u < N , the two sums have to be handled with more care for two
reasons: the summation is only across u terms (instead of N terms) and
the frequency ν is of the form k

N
instead of the required form k

u
to use the

bound from Lemma 6 (said differently ν is no more a Fourier frequency for a
sample size u < N). Therefore, we have to estimate the order of magnitude
of Iu,εj(ν) for ν ∈ [0, 1] instead of ν ∈ F . Lemma 7 and especially equation
(B.4) provides this.

E

max
j∈[M ]

max
ν∈F

∣∣∣∣∣
0∑

v=1−u

εj,ve
−2iπ(v−1)ν

∣∣∣∣∣
2
 ≤ E

max
j∈[M ]

max
ν∈[0,1]

∣∣∣∣∣
0∑

v=1−u

εj,ve
−2iπ(v−1)ν

∣∣∣∣∣
2


= E
[

max
j∈[M ]

max
ν∈[0,1]

uIu,εj(ν)

]
= O (u log u (log u+ logM)) . (B.16)

The second sum in the case u < N is also similar, therefore, collecting (B.15)
and (B.16) in (B.14), we get:

E
[

max
j∈[M ]

max
ν∈F
|ZN,j,u(ν)|2

]
=

{
O (u log u log(uM)) if u < N
O (N logN) if u ≥ N.

(B.17)

It remains to use these bounds in the left hand side of (B.13).

+∞∑
u=1

1

u2γ
E
[

max
j2∈[M ],ν∈F

|ZN,j2,u(ν)|2
]

=
N−1∑
u=1

1

u2γ
E
[

max
j2∈[M ],ν∈F

|ZN,j2,u(ν)|2
]

+
+∞∑
u=N

1

u2γ
E
[

max
j2∈[M ],ν∈F

|ZN,j2,u(ν)|2
]

and using the estimates (B.17),

+∞∑
u=1

1

u2γ
E
[

max
j2∈[M ],ν∈F

|ZN,j2,u(ν)|2
]
≤

N−1∑
u=1

log u log(uM)

u2γ−1
+

+∞∑
u=N

N logN

u2γ
.

It is clear that
N−1∑
u=1

log u log(uM)

u2γ−1
= O

(
log2N

N2(γ−1)

)
+∞∑
u=N

1

u2γ
= O

(
1

N2γ−1

)
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so for any γ < 1,

+∞∑
u=1

1

u2γ
E
[

max
j2∈[M ],ν∈F

|ZN,j2,u(ν)|2
]

= O
(
N2(1−γ) log2N +N2(1−γ) logN

)
.

This quantity is O(Nη) for any η > 0, which proves (B.13) and ends the
proof.

Proposition 4 can now be proved.

Proof. Write ŝij(ν)− s̃ij(ν) as:

ŝij(ν)− s̃ij(ν) =
1

B + 1

B/2∑
b=−B/2

ξyi

(
ν +

b

N

)
ξyj

(
ν +

b

N

)

− hi
(
ν +

b

N

)
ξεi

(
ν +

b

N

)
hj

(
ν +

b

N

)
ξεj

(
ν +

b

N

)
=

1

B + 1

B/2∑
b=−B/2

(
ξyi

(
ν +

b

N

)
− hi

(
ν +

b

N

)
ξεi

(
ν +

b

N

))
ξyj

(
ν +

b

N

)

+ hi

(
ν +

b

N

)
ξεi

(
ν +

b

N

)(
ξyj

(
ν +

b

N

)
− hj

(
ν +

b

N

)
ξεj

(
ν +

b

N

))
.

We recognize the quantities RN,i(ν) that have been bounded in Lemma
8. It is now clear that:

max
(i,j,ν)∈I

|ŝij(ν)− s̃ij(ν)| ≤ max
i∈[M ],ν∈F

RN,i(ν)

×
(

max
i∈[M ],ν∈F

|ξyi(ν)|+ max
i∈[M ],ν∈F

|hi(ν)ξεi(ν)|
)
. (B.18)

By Lemma 6:

max
i∈[M ],ν∈F

|ξεi(ν)| = OP
(√

logM + logN
)

= OP
(√

logN
)

and in conjunction with Lemma 8, for any δ < 1/2,

max
i∈[M ]

max
ν∈F
|ξyi(ν)| ≤ max

i∈[M ]
max
ν∈F
|hi(ν)ξεi(ν)|︸ ︷︷ ︸

OP (
√

logN)

+ max
i∈[M ]

max
ν∈F
|RN,i(ν)|︸ ︷︷ ︸

OP (N−δ)
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which is OP
(√

logN
)
. Each quantity involved in (B.18) is now estimated,

and provides, for any δ < 1/2:

max
(i,j,ν)∈I

|ŝij(ν)− s̃ij(ν)| = OP (N−δ
√

logN) = OP (N−δ
′
)

for any δ′ < 1/2. By Assumption 4, ρ < 1, ie.
√
B + 1 = o(N1/2) therefore

one can always take δ′ = ρ/2+1/2
2
∈ (0, 1/2) such that:

√
B + 1 max

(i,j,ν)∈I
|ŝij(ν)− s̃ij(ν)| = OP (N−δ

′
)

and we get (27).

Appendix C. Proof of Proposition 3: moderate deviations of
s̃ij(ν)

First, we give two preliminary lemmas regarding the concentration of
Gaussian sesquilinear forms.

Lemma 10. Let x,y independent NCM (0, I) random vectors and A a non-
zero M ×M deterministic matrix. For any t > 0,

P (|x∗Ay| > t) = E
[
exp

(
− t2

y∗A∗Ay

)]
. (C.1)

Moreover, if z ∼ NCM (0, I) is jointly independent from x and y, and B is
another non zero M ×M deterministic matrix, for any t, s > 0,

P (|x∗Ay| > t, |z∗By| > s) = E
[
exp

(
− t2

y∗A∗Ay
− s2

y∗B∗By

)]
. (C.2)

The proof of Lemma 10 is straightforward and therefore omitted.
The next lemma is the Hanson-Wright inequality Rudelson et al. (2013)

in the special case of a sesquilinear form.

Lemma 11. Let x,y be independent NCM (0, I) random variables, and A a
deterministic M ×M matrix. Then, for any t ≥ 0:

P (|x∗Ay − E [x∗Ay]| > t) ≤ 2 exp

(
−C min

(
t

‖A‖
,

t2

‖A‖2
F

))
where C is a universal constant (independent of t and A).
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In order to prove Proposition 3, we recall from (14) that s̃ij(ν) may be
written as the Gaussian sesquilinear form

s̃ij(ν) = ξεj(ν)∗
Πij(ν)√
B + 1

ξεi(ν)

where ξε1(ν), . . . , ξεM (ν) are i.i.d. NCB+1(0, I) distributed, and that we de-
note σ2

ij(ν) = 1
B+1

tr Σij(ν) with

Σij(ν) = Πij(ν)Πij(ν)∗

= dg

(
si

(
ν +

b

N

)
sj

(
ν +

b

N

)
: b = −B

2
, . . . ,

B

2

)
.

Note also that thanks to Assumptions 2 and 3, there exist smin, smax > 0 such
that:

0 < smin ≤ inf
m≥1

min
ν∈[0,1]

sm(ν) ≤ sup
m≥1

max
ν∈[0,1]

sm(ν) ≤ smax < +∞

and consequently, the following inequality holds:

0 < s2
min ≤ inf

N≥1
min

(i,j,ν)∈I
λmin (Σij(ν)) < sup

N≥1
max

(i,j,ν)∈I
λmax (Σij(ν)) ≤ s2

max < +∞,

(C.3)

where λmin (Σij(ν)), λmax (Σij(ν)) are respectively the smallest and largest
eigenvalue (or diagonal entry) of Σij(ν).

In the remainder, to lighten the presentation, we use the multi-index α
instead of (i, j, ν) as well as the notation ·α in place of ·ij(ν) so that, for
example, s̃ij(ν), Πij(ν), Σij(ν) become s̃α, Πα and Σα respectively.

From Lemma 10, the probabilities appearing in (25) and (26) in the state-
ment of Proposition 3 can be rewritten as

P
(

(B + 1)
|s̃α|2

σ2
α

> t2
)

= E
[
exp

(
− tr Σα

w∗Σαw
t2
)]

(C.4)

and

P
(

(B + 1)
|s̃α|2

σ2
α

> t2, (B + 1)
|s̃α′|2

σ2
α′

> s2

)
= E

[
exp

(
−
(

tr Σα

w∗Σαw
t2 +

tr Σα′

w∗Σα′w
s2

))]
. (C.5)

for some w ∼ NCB+1(0, I). The next two lemmas are dedicated to the study
of the concentration of tr Σα/w

∗Σαw around 1.
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Lemma 12. There exists two universal constants C1, C2 such that for all
t ∈ (0, 1),

max
α∈I

P
(∣∣∣∣ tr Σα

w∗Σαw
− 1

∣∣∣∣ > t

)
≤ C1 exp

(
−C2Bt

2
)
. (C.6)

Proof. We have

max
α∈I

P
(∣∣∣∣ tr Σα

w∗Σαw
− 1

∣∣∣∣ > t

)
= max

α∈I
P
(

w∗Σαw − tr Σα ∈
[
−t

1 + t
tr Σα,

t

1− t
tr Σα

]c)
≤ max

α∈I
P
(

w∗Σαw − tr Σα ∈
[
− t

2
tr Σα,

t

2
tr Σα

]c)
≤ max

α∈I
P
(
|w∗Σαw − tr Σα| >

t

2
tr Σα

)
.

Since w ∼ NCB+1(0, I), the Hanson-Wright inequality Rudelson et al. (2013)
provides that

P
(
|w∗Σαw − tr Σα| >

t

2
tr Σα

)
≤ 2 exp

(
−C min

(
tr Σα

‖Σα‖
t,

(tr Σα)2

‖Σα‖2
F

t2
))

≤ 2 exp

(
−Ct2 min

(
tr Σα

‖Σα‖
,
(tr Σα)2

‖Σα‖2
F

))
for some universal constant C, where ‖Σα‖ and ‖Σα‖F denote the spectral
norm and Frobenius norm of Σα respectively. From (C.3), we also have

min
α∈I

tr Σα

‖Σα‖
≥ (B + 1)

s2
min

s2
max

min
α∈I

(tr Σα)2

‖Σα‖2
F

(B + 1)
s4

min

s4
max

.

Consequently, we can find some universal constants C1, C2 such that for all
N ≥ 1, (C.6) holds.
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Lemma 13. For any β ∈
(
0, 1

2

)
,

max
α∈I

∣∣∣∣E [ tr Σα

w∗Σαw

]
− 1

∣∣∣∣ = O(B−β) (C.7)

Proof. Define the event

Ωα,N :=

{∣∣∣∣ tr Σα

w∗Σαw
− 1

∣∣∣∣ < κN

}
where κN is some sequence satisfying κN → 0 as N → +∞ and consider the
decomposition∣∣∣∣E [ tr Σα

w∗Σαw

]
− 1

∣∣∣∣ ≤ ∣∣∣∣E [ tr Σα

w∗Σαw
1Ωα,N

]
− 1

∣∣∣∣+ E
[

tr Σα

w∗Σαw
1Ωcα,N

]
. (C.8)

For the first term of the right-hand side of (C.8), the following bound holds:∣∣∣∣E [ tr Σα

w∗Σαw
1Ωα,N

]
− 1

∣∣∣∣ ≤ κN + P
(
Ωc
α,N

)
. (C.9)

Regarding the second term, Cauchy-Schwarz inequality implies that

E
[

tr Σα

w∗Σαw
1Ωcα,N

]
≤

√√√√E

[∣∣∣∣ tr Σα

w∗Σαw

∣∣∣∣2
]√

P
(
Ωc
α,N

)
. (C.10)

Using (C.3), we have

max
α∈I

tr Σα

w∗Σαw
≤ (B + 1)

s2
max

s2
min

1

‖w‖2
.

and since 1
2‖w‖2 is distributed as an inverse–χ2 random variable with 2(B+1)

degrees of freedom, we have from (Robert, 2007, Appendix A6) that

E
[

1

‖w‖4

]
= O

(
1

B2

)
which yields to

sup
N≥1

max
α∈I

E

[∣∣∣∣ tr Σα

w∗Σαw

∣∣∣∣2
]
< +∞.
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Consequently, gathering (C.9) and (C.10) and using Lemma 12, we get

max
α∈I

∣∣∣∣E [ tr Σα

w∗Σαw

]
− 1

∣∣∣∣ ≤ κN + C
√

P
(
Ωc
α,N

)
≤ κN + C1 exp{−C2κ

2
NB}

for some universal constants C1, C2. Choosing κN = B−β with β ∈ (0, 1/2)
yields the desired result.

Before proving Proposition 3, we need one last result on the concentration
of tr Σα

w∗Σαw
around its mean, which is a straightforward consequence of previous

Lemmas 12 and 13.

Lemma 14. Let δ ∈ (0, 1
2
) and (εN)N≥1 some non-negative sequence con-

verging towards 0 as N →∞ and such that εNB
δ → +∞. Then, there exist

two universal constants C1, C2 such that

max
α∈I

P
(∣∣∣∣ tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

]∣∣∣∣ > εN

)
≤ C1 exp

(
−C2ε

2
NB
)
.

Proof. Write:

P
(∣∣∣∣ tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

]∣∣∣∣ > εN

)
≤ P

(∣∣∣∣ tr Σα

w∗Σαw
− 1

∣∣∣∣ > εN −
∣∣∣∣1− E

[
tr Σα

w∗Σαw

]∣∣∣∣) .
From Lemma 13, there exists a universal constant C such that

max
α∈I

∣∣∣∣1− E
[

tr Σα

w∗Σαw

]∣∣∣∣ ≤ C

Bδ
.

Moreover, by assumption on the rate of εN , we have C
Bδ

< εN
2

for all large N .
Consequently,

max
α∈I

P
(∣∣∣∣ tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

]∣∣∣∣ > εN

)
≤ max

α∈I
P
(∣∣∣∣ tr Σα

w∗Σαw
− 1

∣∣∣∣ > εN
2

)
(C.11)

for all large N . Applying directly Lemma 12 to (C.11) allows to conclude
the proof.
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Endowed with Lemmas 12, 13 and 14, we are now in position to complete
the proof of Proposition 3.

We first tackle (25) and show as a first step that there exists η > 0 such
that for any universal constant C,

max
t∈[0,CBη ]

max
α∈I

∣∣∣∣P((B + 1)
|s̃α|2

σ2
α

> t2
)

exp

(
E
[

tr Σα

w∗Σαw
t2
])
− 1

∣∣∣∣ = o(1).

(C.12)

Let δ ∈
(
0, 1

2

)
and (εN)N≥1 some non-negative sequence converging to 0 and

satisfying εNB
δ → +∞, and define the event

Θα,N :=

{∣∣∣∣ tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

]∣∣∣∣ < εN

}
(C.13)

as in Lemma 14. Next, consider the decomposition

E
[
exp

(
−
(

tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

])
t2
)]

= E
[
exp

(
−
(

tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

])
t2
)
1Θα,N

]
+ E

[
exp

(
−
(

tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

])
t2
)
1Θcα,N

]
:= Ψα,N(t) + ∆α,N(t). (C.14)

On the event Θα,N , we have

exp

(
−
(

tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

])
t2
)
∈
[
exp

(
−εN t2

)
, exp

(
εN t

2
)]

which implies, that:

|Ψα,N(t)− 1| ≤ max
(

1− P[Θα,N ]e−εN t
2

,P[Θα,N ]eεN t
2 − 1

)
≤
∣∣∣eεN t2 − 1

∣∣∣+
(

1− e−εN t2
)

+ (eεN t
2

+ e−εN t
2

)P[Θc
α,N ].

Using Lemma 14, we further have

max
α∈I
|Ψα,N(t)− 1|

≤
∣∣∣eεN t2 − 1

∣∣∣+
(

1− e−εN t2
)

+ (eεN t
2

+ e−εN t
2

)C1e
−C2ε2NB (C.15)
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for some universal constants C1, C2. Regarding ∆α,N(t), we clearly have

|∆α,N(t)| ≤ P
(
Θc
α,N

)
exp

(
E
[

tr Σα

w∗Σαw

]
t2
)
.

Using Lemmas 13 and 14, for any β ∈
(
0, 1

2

)
, there exists a universal constant

C3 such that

max
α∈I
|∆α,N(t)| ≤ C1 exp

(
−C2Bε

2
N +

(
1 +

C3

Bβ

)
t2
)
. (C.16)

Combining (C.14), (C.15) and (C.16), one gets

max
α∈I

∣∣∣∣E [exp

(
−
(

tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

])
t2
)]
− 1

∣∣∣∣
≤
∣∣∣eεN t2 − 1

∣∣∣+
(

1− e−εN t2
)

+ (eεN t
2

+ e−εN t
2

)C1e
−C2ε2NB

+ C1 exp

(
−C2Bε

2
N +

(
1 +

C3

Bβ

)
t2
)
.

Set εN = B−
δ
2 so that εN → 0 and εNB

δ → +∞ as required, and let η = δ
8
.

Then, recalling that δ ∈
(
0, 1

2

)
, we have

εNB
2η =

1

B
δ
4

−−−−→
N→+∞

0,

ε2NB = B1−δ −−−−→
N→+∞

+∞,

B2η

ε2NB
= B2η+δ−1 = B

5
4
δ−1 −−−−→

N→+∞
0.

Therefore, for any universal constant C,

max
t∈[0,CBη ]

max
α∈I

∣∣∣∣E [exp

(
−
(

tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

])
t2
)]
− 1

∣∣∣∣ −−−→N→∞
0,

which, thanks to (C.4), implies (C.12). Finally, using Lemma 10, we deduce
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that

max
t∈[0,CBη ]

max
α∈I

P
(

(B + 1)
|s̃α|2

σ2
α

> t2
) ∣∣∣∣exp

(
E
[

tr Σα

w∗Σαw

]
t2
)
− et2

∣∣∣∣ (C.17)

≤ max
t∈[0,CBη ]

max
α∈I

P
(

(B + 1)
|s̃α|2

σ2
α

> t2
)

exp

(
E
[

tr Σα

w∗Σαw

]
t2
)

× max
t∈[0,CBη ]

max
α∈I

∣∣∣∣1− exp

((
1− E

[
tr Σα

w∗Σαw

])
t2
)∣∣∣∣

≤ (1 + o(1))

(
1− exp

(
O
(
B2η

Bδ

)))
−−−→
N→∞

0,

which, combined with (C.4), shows (25).
We now turn to (26). Since the proof is very similar to the one of (25),

we only provide the main steps. Using (C.5), we consider the following
decomposition:

P
(

(B + 1)
|s̃α|2

σ2
α

> t, (B + 1)
|s̃α′|2

σ2
α′

> s

)
× exp

(
E
[

tr Σα

w∗Σαw

]
t2 + E

[
tr Σα′

w∗Σα′w

]
s2

)
:= Ψα,α′,N(t, s) + ∆α,α′,N(t, s)

where

Ψα,α′,N(t, s) =

E

[
exp

(
−
(

tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

])
t2
)

× exp

(
−
(

tr Σα′

w∗Σα′w
− E

[
tr Σα′

w∗Σα′w

])
s2

)
1(Θα,N ∩Θα′,N)

]
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and

∆α,α′,N(t, s) =

E

[
exp

(
−
(

tr Σα

w∗Σαw
− E

[
tr Σα

w∗Σαw

])
t2
)

× exp

(
−
(

tr Σα′

w∗Σα′w
− E

[
tr Σα′

w∗Σα′w

])
s2

)
1(Θc

α,N ∪Θc
α′,N)

]
.

Using exactly the same arguments as for (C.15) and (C.16) and keeping the
same requirements as above regarding the behaviour of sequence (εN)N≥1

and constant η, we may show that

max
t,s∈[0,CBη ]

max
α∈I
α′∈Iα

|Ψα,α′,N(t, s)− 1| −−−→
N→∞

0,

as well as
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t,s∈[0,CBη ]
max
α∈I
α′∈Iα

∆α,α′,N(t, s) −−−→
N→∞

0.

Consequently,

max
t,s∈[0,CBη ]
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α∈I
α′∈Iα
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α
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E
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[
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N→∞

0.

As for (C.17), we also have using a similar bound,

max
t,s∈[0,CBη ]

max
α∈I
α′∈Iα

P
(

(B + 1)
|s̃α|2

σ2
α

> t, (B + 1)
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σ2
α′
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− exp
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0.

The two previous convergences combined together complete the proof of (26).
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