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Resumé

Des techniques issues du domaine des grandes matrices aléatoires ont été récemment utilisées afin d’aborder
des problémes de traitement du signal en grande dimension. Dans leur trés grande majorité, les travaux
correspondants ont étudié des schémas d’estimation et de détection basés sur des fonctionnelles de la matrice
de covariance empirique des observations. La théorie des grandes matrices aléatoires a permis de déterminer
le comportement de ces fonctionnelles, et d’en déduire des approches statistiques nouvelles bien adaptées
au contexte des grandes dimensions. Cependant, de nombreux problémes mettant en jeu des séries tempo-
relles de grande dimension font naturellement apparaitre des matrices plus générales que les matrices de
covariance empirique. Le but de cette thése est d’étudier les valeurs singuliéres de deux types de grandes
matrices aléatoires jouant un role fondamental en statistiques des séries temporelles multivariables, et de
déduire des résultats un nouvelle approche permettant d’estimer la dimension minimale des représentations
d’état d’'un certain type de série temporelle de grande dimension a spectre rationnel. Plus précisément,
I'observation est supposée étre une version bruitée d’une série temporelle (uy,)nez de dimension M dont la
densité spectrale est rationnelle et de rang déficient, le bruit additif (v,)n,ecz étant supposé étre blanc, et
gaussien complexe de matrice de covariance inconnue. Dans ce contexte, il est tout a fait fondamental d’étre
capable d’estimer de fagon consistante la dimension minimale P des représentations d’état de u & partir des
N observations y1,¥2,...,yn. Si L est n’importe quel entier supposé plus grand que P, les approches les
plus traditionnelles sont basées sur le fait que P coincide avec le rang de la matrice d’autocovariance R?‘p

entre les vecteurs de dimension ML (y?;LL, o 7y’r,ILj+2L71)T et (yl,... ,y%;Lfl)T, mais aussi avec le nombre
de valeurs singuli¢res non nulles de la matrice normalisée C¥ = (RL)=1/2 R]ﬁp(RL)_l/ 2 ot R représente
la matrice de covariance des 2 vecteurs de dimensions ML qui viennent d’étre introduits. Dans le régime
asymptotique usuel dans lequel N — 400 et M et L restent fixes, les matrices Rﬁp et CF peuvent étre

estimées de fagon consistante par leurs versions empiriques Rﬁp et CF, et P peut sans difficulté étre évalué
a partir des plus grandes valeurs singuliéres de ces estimateurs. Dans le régime des grandes dimensions dans

lequel M et N convergent vers oo de telle sorte que cy = % converge vers 0 < ¢, < 1, L étant fixe,

Rﬁp et CL ne sont plus des estimateurs consistants de R]Lc p et CT au sens de la norme spectrale. Dans ces
conditions, il n’est nullement évident qu’il soit toujours possible d’estimer P de facon consistante & partir
des valeurs singuliéres de R]Lc|p et L. Dans cette thése, le comportement des valeurs singuliéres de R]I:|p et

CL est étudiée dans le régime des grandes dimensions introduit plus haut. Le cas ot u = 0, ou de fagon
équivalente y = v, est tout d’abord considéré. Il est alors établi que les distributions empiriques des valeurs
singuliéres de R]Lc‘p et T convergent vers une limite dont les supports Sg et Sc sont caractérisés. 11 est

montré que S¢ = [0,2v/c(1 —¢i)]U{1}1, _ 1, et que Sk a une structure plus compliquée. De plus, toutes
*9

les valeurs singuliéres de Rf‘]p et CL sont situées au voisinage de Sp et S¢ respectivement. Si w est non nul,
la dégénérescence du rang de la densité spectrale de u est utilisée pour étudier si certaines valeurs singuliéres
de RJ]%IP et CL s’échappent de Sg et S¢. Il est montré que le nombre de valeurs singuliéres de R]fz‘p situées
en dehors de Si n’est pas directement relié & P, mais que, heureusement, P coincide avec le nombre de
valeurs singuliéres de crL qui sont plus grandes que 24/c.(1 — ¢,) si ¢x < %, si le signal u est suffisamment
puissant par rapport au bruit v, et si les valeurs singuliéres non nulles de C'* sont suffisamment grandes. Ces
résultats impliquent que les valeurs singuliéres de R?‘p ne peuvent pas étre utilisées pour estimer P de fagon
consistante dans le régime des grandes dimensions. Par contre, moyennant quelques hypothéses, P peut-étre
estimé de fagon consistante par le nombre de valeurs singuliéres de CL qui sont plus grandes que 24/c (1 — ¢y).



Abstract

A number of recent works proposed to use large random matrix theory in the context of high-dimensional
statistical signal processing, traditionally modelled by a double asymptotic regime in which the dimension
of the time series and the sample size both grow towards infinity. These contributions essentially addressed
detection or estimation schemes depending on functionals of the sample covariance matrix of the observa-
tion. Large random matrix theory results were used to evaluate the behaviour of such functionals in the
high-dimensional context, and to propose new improved performance approaches. However, fundamental
high-dimensional time series problems depend on matrices that are more complicated than the sample cova-
riance matrix. The purpose of the present PhD is to study the behaviour of the singular values of 2 kinds of
structured large random matrices, and to use the corresponding results to address an important statistical
problem. More specifically, the observation (y,)necz is supposed to be a noisy version of a M—-dimensional
time series (up)nez with rational spectrum that has some particular low rank structure, the additive noise
(Un)nez being an independent identically distributed sequence of complex Gaussian vectors with unknown
covariance matrix. An important statistical problem is the estimation of the minimal dimension P of the
state space representations of v from N samples yi,...,yn. If L is any integer larger than P, the traditio-
nal approaches are based on the observation that P coincides with the rank of the autocovariance matrix
Rﬁp between the M L-dimensional random vectors (yL, ;... 4yl o, )T and (g}, ... yl, ;)T as well as

with the number of non zero singular values of the normalized matrix C* = (RF)~1/2 RJL%(RL )~1/2 where

RL represents the covariance matrix of the above M L-dimensional vectors. In the low-dimensional regime
where N — +o0o while M and L are fixed, the matrices R]L”|p and C¥ can be consistently estimated by their

empirical counterparts ]A%J]:m and CL , and P can be evaluated from the largest singular values of éﬁp and

CL. 1f however M and N converge towards +oo in such a way that cy = % converges towards 0 < ¢, < 1,
L being fixed, the above estimates R}%‘p and C% do not converge towards their true values in the spectral

norm sense. It is therefore not obvious whether the largest singular values of Rj%lp and CL can be used in

order to estimate P consistently. In this thesis, the behaviour of the singular values of ];?]Lc » and CL in the
above high-dimensional regime are studied. The case where u = 0, or equivalently y = v, is first considered
and it is established that the empirical singular values distribution of R]Lc‘ » and CL converge towards a li-
mit. The supports Sg and S¢ of the corresponding limit distributions are characterized : it is proved that
Sc =10,2¢/cx(1 —c)JU{1}1, o 1 and that the structure of Si is more intricate. It is moreover established

that all the singular values of R?\p and CL are located in the neighbourhood of Sp and S¢ respectively.
When wu is present, the low rank structure of w is used in order to study whether some singular values of
RJLf|p and CT escape from Sk and S¢. It is shown that the number of singular values of R]f:‘p located outside

Spr is not directly related to P, while, fortunately, P coincides with the number of singular values of L
that are larger than 24/c(1 — ¢y), provided c, < %, the signal u is powerful enough compared to the noise
and the non zero singular values of O are large enough. These results imply that while the singular values
of Rﬁp can be used in order to estimate P consistently in the standard low-dimensional regime, this is
no longer the case in the high-dimensional context considered here. Fortunately, under certain assumptions,

P can still be consistently estimated as the number of singular values of CL that are larger than 24/c.(1 — ¢y)
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Chapitre 1

Introduction.

Due to the spectacular development of data acquisition devices and sensor networks, it becomes very common
to be faced with high-dimensional time series in various fields such as digital communications, environmental
sensing, electroencephalography, analysis of financial datas, industrial monitoring, .... In this context, it is
not always possible to collect a large enough number of observations to perform statistical inference because
the durations of the signals are limited and/or because their statistics are not time-invariant over large
enough temporal windows. As a result, fundamental inference schemes do not behave as in the classical low-
dimensional regimes. This stimulated considerably in the ten past years the development of new statistical
approaches aiming at mitigating the above mentioned difficulties. In particular, a number of works proposed to
use large random matrix theory in the context of high-dimensional statistical signal processing, traditionally
modelled by a double asymptotic regime in which the dimension of the time series and the sample size both
grow towards infinity. These contributions essentially addressed detection or estimation schemes depending
on functionals of the sample covariance matrix of the observation. Large random matrix theory results were
used to evaluate the behaviour of such functionals in the high-dimensional context, and to propose new
improved performance approaches. However, fundamental high-dimensional time series problems depend on
matrices that are more complicated than the sample covariance matrix. The purpose of the present PhD is
to study the behaviour of the eigenvectors of 2 kinds of structured large random matrices, and to use the
corresponding results to address certain important statistical signal processing problems.

1.1 Motivation

In this work we consider a M—dimensional multivariate time series (y,)necz generated as
Yn = Up + Un, (11)

where (v, )nez is a complex Gaussian "noise" term such that E(v,xv)) = R for some unknown positive
definite matrix R, and where (u,)nez is a "useful" non observable Gaussian signal with rational spectrum.
Thus, u, can be represented as

Tnt+1 = Azxy + Bwy, u, = Czy + Dwy, (1.2)

where (wp)nez is a K < M-dimensional white noise sequence (E(w,ixw’) = Ik i), A is a deterministic
P x P matrix whose spectral radius p(A) is strictly less than 1, and where B, C, D are deterministic matrices.
The P-dimensional Markovian sequence (x,)ncz is called the state-space sequence associated to . The
state space representation is said to be minimal if the dimension P of the state space sequence is
minimal. Given the autocovariance sequence (Ry n)nez of u (i.e. Ryyn = E(uginuy) for each n), the so-called
stochastic realization problem of (uy, ),z consists in characterizing all the minimal state space representations
(1.2) of u, or equivalently in identifying all the minimum Mac-Millan degreesE matrix-valued functions
®(2) = D + C(z — A)~1B such that p(A) < 1 and

Su(e2i7rf) — ZRu,ne_%wnf — (I)(e%ﬂ—f)(l)(e%ﬂ—f)* (13)
neL

1. The Mac-Millan degree of a rational matrix-valued function ® is defined as the minimal dimension of the matrices A for
which ®(2) can be represented as D + C(2I — A)™'B



for each f. Such a function @ is called a minimal degree causal spectral factorization of S,,. We refer the
reader to [30] or [45] for more details.

The identification of P and of matrices C' and A is based on the observation that the autocovariance sequence
of u can be represented as

Run = E(u,pu}) = CA™ G (1.4)
for each n > 1, where the 3 matrices (A, C, G) are unique up to similarity transforms, thus showing that the
matrices C' and A associated to a minimal realization are uniquely defined (up to a similarity). Moreover, if
we define the autocovariance matrix RJLc‘p’u between the past and the future of u as

Un+L

u
L n+L+1
Rijpy =B : (Ups Ut -+ U 1) (1.5)

Un+2L—1
then, it holds that

(L) _ (L) p(L)
Rf|p,u =00V CY™, (1.6)
where matrix O is the ML x P "observability" matrix
C
CA
o) = , (1.7)
CA.L_1
and matrix C(X) is the P x ML "controllability" matrix
¢ = (AF1G, A2, .., G). (1.8)
For each L > P, the rank of R;ﬁgu remains equal to P, and each minimal rank factorization of R;j\;;u can
be written as 1) for some particular triple (A, C, G). In particular, if R;‘Lgu — OI'O* is the singular value
decomposition of R . matrix OT''/2 coincides with the observability matrix @) of a pair (C,A). C and

flpu
A are immediately obtained from the knowledge of the structured matrix @), This discussion shows that

the evaluation of P, C' and A from the autocovariance sequence of u is an easy problem. We mention that,
while C' and A are essentially unique, there exist in general more than one pair (B, D) for which (1.2)) holds
because the minimal degree spectral factorization problem (1.3]) has more than 1 solution. We refer the reader
to [30] or [45].

We notice that as (v, )nez in is an uncorrelated sequence, it holds that Ry, = E(y,4xy;) coincides with
R,y for each n > 1. Therefore, P also coincides with the minimal dimension of state-space realizations of y,
and matrices C' and A can still be identified from the autocovariance sequence of the noisy version y of u. In
practice, however, the exact autocovariance sequence (R, ,)n>1 is in general unknown, and it is necessary to
estimate P and (C, A) from the sole knowledge of N samples y; = uy + v1,y2 = ug + v, ..., yn = uy + uN.

For this, P is first estimated as the number of significant singular values of the empirical estimate RJLc|p ” of
w PL _ pL
the true matrix Rf‘p’y = Rf|p,u defined by
flpy — N

where matrices Y y and Y), y defined as

Y1 Y2 ... YN-1 YN

Y2y ... YN YN+1

YN = : : : : : (1.9)
Yyr Yr+1 --- YN+L-2 YN+L-1



and

Yyr+1 Yr+2 --- YN-1+L YN+L
Yyr+2 Yr+3 .- YN+L YN+L+1

Yin = : : ; ; : : (1.10)
Yar,  Y2rL+1 .- YN+2L-2 YN+2L-1

We note that the samples (yn41)i=1,...2r.—1 are supposed to be available while we have assumed that only the
first IV samples are observed. In order to simplify the presentation, this end effect is neglected. If (9p)p=1,....p

and © = (91, .. 9 p) are the P largest singular values and corresponding left singular vectors of matrix R;‘ )

and if T is the P x P diagonal matrix with diagonal entries (4y)p=1,...,p, the ML x P matrix o) = @FUQ
is an estimator of an observability matrix O, O@) has not necessarily the structure of an observability
matrix, but C' and A can be estimated respectively by the top M x P block C' of O%) and by the argument
A of the minimum of the quadratic fuction
A(L) A(L A(L) L
Tr ((OdownA - OSP)) (OdownA O( )> )
where the operator "down" (resp. "up") suppresses the last (resp. the first) M rows from ML x P matrix
OW) . This approach provides a consistent estimate of P, C, A when N — 400 while M, L and P are fixed

parameters. We refer the reader to [12] for a detailed analysis of this statistical inference scheme known as
the Principal Component Algorithm.

If M is large and that the sample size N cannot be arbitrarily larger than M, the ratio M L/N may not be

small enough to make reliable the above statistical analysis. It is thus relevant to study the behaviour of the

above estimators in asymptotic regimes where M and N both converge towards 400 in such a way that %
(L)

converges towards a non zero constant. In this context, matrix R Flpw is no longer a consistent estimate of
I’

(L) A (L)

the true matrix R oy in the spectral norm sense. Therefore, the singular values of R Flpw have no reasons

to behave as those of R;@y. Thus, it appears of fundamental interest to study the behaviour of the singular

L)

values of ]%(l , and to study whether its largest singular still allow to estimate P consistently, at least if
the useful sigﬁal u appears as powerful enough compared to the noise v. The behaviour of the associated
singular vectors would of course be of potential interest in order to address the estimation of matrices C and
A, but this important topic is not addressed in this thesis.

Another way to estimate P is to resort to the concept of canonical correlation coefficients between the past and
the future of the time series (yy,)nez. We denote by Y, and Y the (infinite dimensional) subspaces generated
by the components of (,)n<o and (y,)n>1, and consider 2 orthonormal bases (wpk)r>0 and (wyk)k>0 of Vp
and Yy respectively. Then the canonical correlation coefficients between the past and future of y are defined
as the singular values of the (infinite) matrix with entries E(wywy ;) (see [25] for more informations), and
it is well known that P coincides with the number on non zero such coefficients. See [30| for an exhaustive
presentation of the related results and their important implications on questions such as the identification
of the state space models or on reduction model technics. Moreover, if J, and Yy are replaced by the finite
dimensional spaces Y, 1 and Yy generated respectively by the components of y,,n = —(L —1),...,0
and y,,n = 1,...,L for a certain integer L. > P, it turns out that the number of non zero canonical
correlation coeflicients between Y, 1 and Yy 1, is still equal to P. We refer again to [30] for more details on
the effects of the truncation. In order to estimate P from the N avalaible observations yi,...,ynx in the
standard low-dimensional regime N — +oo while M and L are fixed, a standard solution is to estimate
the correlation coefficients between ), 1, and Yy 1 by the canonical correlation coefficients between the row
spaces of matrices Y, y and Yy n defined by and respectively, and to estimate P as the number of
significant coefficients, i.e. as the number of significant singular values of matrix (]%L VT2 RE Flow (RL )12,

or equivalently of the number of significant eigenvalues of (RJQ )~1/2RE (RL )L REx (Rf,y) 12 Here,

flpy flpyy
R R . Yy NYE . Y, NY*
matrices R‘%’y and RL_ are defined by R]Lc’y = 120N and RL = 222N respectively. In the low-dimensional



regime, this approach provides consistent estimates of P, but this is no longer the case in the high-dimensional

regime where M and N both converge towards +oo in such a way that % converges towards a non

zero constant. The study of the eigenvalues of (R]Leyy)*1/2}?%1)&(ﬁ]ﬁy)*lRJLclz,y(Rﬁy)*1/2 in the above high-
dimensional regime thus appears as a highly relevant problem.

Without formulating specific assumptions on u, these problems seem very complicated. In the past, a number
of works addressed high-dimensional inference schemes based on the eigenvalues and eigenvectors of the
empirical covariance matrix of the observation (see e.g. |37], [35], |38], [20], |47], [48], |13], [44]) when the
useful signal lives in a low-dimensional deterministic subspace. Using results related to spiked large random
matrix models (see e.g. [4] [5], |41]), based on perturbation technics, a number of important statistical
problems could be addressed using large random matrix theory technics. In this thesis, we follow the same

kind of approach to address the estimation problem of P when u satisfies some low rank assumptions.

1.2 Contribution of the thesis.

Time series y being the sum of the noise v with a useful signal u is generated by certain state-space models
(1.2) to be precised below, the general topic of the thesis is to study the singular values of the empirical

estimates ]A%Jﬁp , and (]A%J%y)*l/ QRJLqpy(Rﬁy)*l/ 2 in the following asymptotic regime :

M and N both converge towards +oo in such a way that ¢y = % — ¢4, L being a fixed integer.

When this will be possible, we will deduce from the corresponding results conditions under which P can be
consistently estimated from the above matrices. We notice that, as L is a fixed integer, M and N are thus of
the same order to magnitude. However, it should be mentioned that the case where both M and L converge
towards +o0 in such a way that ¢y — ¢, is also of potential interest. While a number of results of this thesis
obtained in the absence of signal (i.e. y = v) could be generalized to this context, the study of the largest
singular values of R]Lﬂp’y and (Rﬁy)_1/2R§|p7y(}?£y)_1/2 in the presence of signal would be deeply modified
because, in contrast with the case L finite, matrices Y, y and Yy y would not be finite rank perturbations of
the matrices V), ;v and Vy n defined from the noise samples vy, ..., vy y2r—1. This thesis is thus only devoted

to the above high-dimensional regime with L finite.
This thesis is structured as follows.
In Chapter [2] we present some basic tools and notations that are used along the thesis.

Chapter [3|is dedicated to the study of the singular values of matrix RJLC‘p o OF equivalently of the eigenvalues

of Rﬁpy(Rﬁp y)*, in the case when the signal is absent, i.e. y, = v,. In this context, it thus holds that

ﬁYp’ N = ﬁ‘/}g ~ and ﬁYﬁ N = Tlﬁvf, ~- In the following, we denote by W), y and Wy n the normalized

matrices )

1
=—=V,N, W %
/N p,N N N f.N
The goal of this chapter is to study the almost sure location of the eigenvalues of W, NW, N W, NW]T N in
the above asymptotic regime.

Wp.n (1.11)

For this, we first evaluate the behaviour of the empirical eigenvalue distribution oy of the ML x ML
matrix Wy nW) W, NW; n- Using Gaussian tools, i.e. integration by parts formula in conjunction with
the Poincaré-Nash inequality (see e.g. |40]), we characterize the asymptotic behaviour of the resolvent
Qn(z) = (Wf7NW;7NWp7NW}k’N — zI)~!. As the entries of Wf,NW;’NvaNW;N are biquadratic functions

of y1,...,yn+ar—1, we rather use the well-known linearization trick that consists in studying the resolvent
Qn(z) of the 2M L x 2M L hermitized version
( 0 Wy, NW; N)
Wp,NW}iN 0

of matrix Wy NW) . As is well known, the first M L x M L diagonal block of Qn(z) coincides with 2Q ~n(2?).
Therefore, we characterize the asymptotic behaviour of Qx(z), and deduce from this the results concerning



®n(z). The hermitized version is this time a quadratic function of y,...,yn121—1, and the Gaussian cal-
culus that is needed in order to study Qu(z) appears much simpler than if Qx(z) was evaluated directly.

We introduce the M x M matrix-valued function T (z) defined by

zentn(2) -1
Tn(z) = — ( 20y + 2NN p
e = = (s 2R )

tn(z) being the unique solution of the equation

1 zentn(2) -1
tn(z) = —TrRy (—2ly — — 225 R
(=) = T N( M e ()

such that ¢x(z) and zty(z) belong to CT when z € C*. ty(z) and Tx(z) are shown to coincide with the
Stieltjes transforms of a scalar measure py and of a M x M positive matrix valued measure ij\; respectively
(see Section for a formal definition of a M x M positive matrix valued measure). We recall that Ry =
E(v,v}) is the covariance matrix of the random vectors (vy)nez. It is shown that the resolvent Qn(z)
of nyNW;NWp,NWf’ y has in some sense the same asymptotic behaviour than Iy ® Tn(z). Moreover,
recalling that 7y denotes the empirical eigenvalue distribution of W, NW;, NWh, NW]’{ N it is proved that
VN = ﬁTr(V%ﬂ,) is a probability measure such that vy — vy — 0 weakly almost surely. vy is referred to as
the deterministic equivalent of 7. We study the properties and the support of vy, or equivalently of un
because the 2 measures are absolutely continuous one with respect to each other. For this, we study the
behaviour of ¢y (z) when z converges towards the real axis. For each x > 0, the limit of tx(2) when z € C*
converges towards z exists and is finite. If ¢y < 1, we deduce from this that vy is absolutely continuous w.r.t.
the Lebesgue measure. The corresponding density gn(z) is real analytic on R™*, and converges towards +o0
when © — 0,z > 0. If ¢y < 1, it holds that gy (x) = O(ﬁ) while gn(z) = O(ﬁ%) ifey=11Ifey > 1, vy
contains a Dirac mass at 0 with weight 1 — Ci and an absolutely continuous component. In order to analyse
the support of uy and vy, we establish that the function wy(z) defined by

1

wn(2) = zenty(z) — onin ()

is solution of the equation ¢y (wy(z)) = z for each z € C — RT where ¢x(w) is the function defined by
2 1 —1 1 -1
on(w) = eyw MTrRN (Ry —wl) CN MTrRN (Ry —wl)” —1).

This property allows to prove that apart {0} when ¢y > 1, the support of u is a union of intervals whose end
points are the extrema of ¢ whose arguments verify ﬁTrRN (Ry —wl )_1 < 0. A sufficient condition on
the eigenvalues of Ry ensuring that the support of uy is reduced to a single interval is formulated. Using the
Haagerup-Thorbjornsen approach ( |[17]), it is moreover proved in section that for each N large enough,
all the eigenvalues of Wy v W;} N WpnN W}‘ n lie in a neighbourhood of the support of the deterministic
equivalent vy.

We finally indicate that the use of free probability tools is an alternative approach to characterize the
asymptotic behaviour of . While this approach is simpler than the use of the Gaussian tools proposed
in the present chapter, we mention that the above free probability theory arguments do not allow to study
the asymptotic behaviour of the resolvent of Wy nW ) W), NW}"’ n heeded to address in Chapter {4 the case
where a useful signal u is present.

In Chapter [4] we pass to the case when the signal is present and study its influence on the eigenvalues
YY)
N

of matrix Rﬁpy(}?ﬁp y)*. For this, we use a classical approach based on the observation that matrix
Ve

is a finite rank perturbation of matrix —%* due to the noise (vj)nez. For simplicity we assume that the
support of pn is reduced to one interval denoted [0,z +]. We first present assumptions on the useful signal
as well as on the asymptotic behaviour of the empirical eigenvalue distribution of the covariance matrix Ry




of the noise. These assumptions ensure that a number of terms depending on N have finite limits when
N — 400, and allow to prove that some of the largest eigenvalues of R f‘py(R f‘py)* may converge towards
limits that are located outside the “bulk” [0, zx 4] for each N large enough. More precisely, we assume that
the dimension P of the minimal state space representation of u is a fixed integer P, that K is also
fixed, and that the matrices A and B do not scale as well with M and N. Therefore, the P—dimensional
markovian sequence z does not depend on M and N. If we denote by u’ the M L-dimensional vector
ul = (ul,.. . jul n ;)7 it is easily seen that the covariance matrix Ri ~ on u% is rank deficient, and that
its rank r verifies P < r < P+ K L. While » may depend on M, N, we assume that it is constant for NV large
enough. If we introduce the eigenvalue / eigenvector decomposition of RZ un = © NA% 0%, it is easily seen

\/% is a rank r matrix for each N large enough, and if

Uin
VN

represents its singular value decomposition, then we infer that [|©; yO] y —ONO} | = 0 and |A; N —An]|| —

A\ *
= 0; NA; NO; N

0. Moreover, for N large enough, matrix (:);Z Nép, ~ is a rank P matrix whose singular values are the canonical
correlation coefficients between the row spaces of U, v and Uy , and when N — 400, these coefficients have
the same asymptotic behaviour than the canonical correlation coefficients between the spaces generated by the
components of u% and of u’ i r- In the following, we assume that the diagonal matrices A converges towards
a limit matrix A > 0 when N — +00, or equivalently that the r non zero eigenvalues of Rﬁ’ N converge

towards non zero limits, and that the r x r rank P matrices (:)} Nép, N converge towards a (necessarily rank
P) matrix Q.. The empirical eigenvalue distribution of Ry is also assumed to have a compactly supported
limit distribution carried by the interval [)\_7*, )\4_7*] where A_, and Ay, are the limits when N — +o0 of
the smallest and of the largest eigenvalues of Ry assumed to exist. This imply that the sequence (un)n>1
converges towards a limit p., and that the Stieltjes transforms sequence (tx)n>1 converges towards a limit
t«(z). Moreover, zn 4 converges towards a finite limit x ,. Finally, under a certain extra assumption that
will be stated inside the Chapter, the r x » matrix valued measure Sy defined by

dBn(\) = Ok (I ® dvi(\)) On (1.12)
is shown to converge towards a limit [3,. We are now in position to define the matrix-valued function H,(z)
defined by
ity (2 — ALQEA,
f.() - [ Fle oAl — (Ta () T (et
«(2) = AV QAW t+(2) AQ (T4, ( ))—1
(T (catn(2))? (et () pulZ

where t.(z) is defined by t.(2) = 2t.(2?) and Tp, (2) = 2713, (2?), Ts.(2) being the Stieltjes transform of B..
Then, we establish that the equation
det (H.(y)) =0

has s solutions that are larger than /., where s is an integer verifying 0 < s < 2r. Moreover, for N large
enough, exactly s eigenvalues of R f|py(R]Lc|py)* escape from the interval [0, z, ], and converge towards the
squares of the s solutions of det (H.(y)) = 0 that are larger than ,/z, ;. While it is difficult to characterise
s in the general case, we exhibit examples where P takes the same value, but s can takes any value of
{0,1,...,2r}. This means that the number of eigenvalues of Rf|py(Rf|p ,)" that escape from [0, z, 1] does
not in general coincide with P, and it seems not obvious to estimate P consistently from the largest eigen-
values of Rf|p y(Rf|p )

In Chapter under the same kind of assumptions on the useful signal, we establish that in contrast
with R f‘py(R f|py)*, it is possible to estimate P consistently from the largest eigenvalues of the matrix

(Rf )~ 1/2Rf‘p y(RL )~ Rflp :U(R]Lcy)*l/2 provided the useful signal is powerful enough and its own correlation
coefﬁClents between the past and the future are large enough. In the following, in order to simplify the
notations, we introduce matrix

Yin Vin  Un . Ui.n

SNEUN TN TN T N
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for i = {p, f} (we recall that W}, y and Wy x are defined by ), and remark that

(R~ 2R, ()T RE,  (RE) T2 = (S8 ™ 28w v (S n) ™ Sy A g (B v Sfn) ™

It is clear that apart 0, the eigenvalues of this matrix coincide with the eigenvalues of the matrix
E;,N(Ep,NE;,N)_lzp,NE},N(Ef,NZ?,N)_IZf,N =11, NIy N

where II, y = E;,N(EP,NE;N)_lzp,N and Il n = E?’N(ELNE?N)AEJQN represent the orthogonal projec-

tion matrices over the row spaces of Y, v and Yy n respectively. Since the eigenvalues of II, yII; x do not
exceed 1, it is natural to assume in this part that cy = ML/N — ¢, € (0,1].

In the absence of signal.

We first analyse the eigenvalues of 11, yII; y when the signal is absent, i.e. y = v, or equivalently % =
f N 1/2 zzd

Xp N = Wp N and N = = YN = Wy n. We notice that for each n, vector v, can be written as v, = Ry v,

where the vectors (v¥?),,cz are independent and N.(0, ) distributed. Then, it holds that Win = R%2Wi”ﬁ,

n

for i = p, f where matrices W;’j‘(, and W}ljlv are built from the A(0, I) distributed vectors (vffd)nzlw,’ N+2L—1-

As the row spaces of W; y and W”d coincide, the two projectors II, y and Il coincide with the projectors
H”C]lv and H”C]lv defined from W“j‘(, and W}% Therefore, when the useful signal is absent, we can assume
Wlthout restriction that Ry = I

In Chapter [5, we denote by Iy the empirical eigenvalue distribution of II, NIl x despite the fact that Dy
represents in Chapter 3| the empirical eigenvalue distribution of Wy, NW; y- If matrices Wy, vy and Wy N
where mutually independent random matrices with i.i.d. complex standard Gaussian entries, free probability
theory methods (see e.g. [50]) or Gaussian tools ( [46]) would imply that if 7y denotes the free multiplicative
convolution product of cxdy + (1 — en)dp with itself, then, oy — oy — 0 almost surely. As it is well known,
Uy is given by

\/)\(461\/(1 - CN) — )\)

drn(A) = 27A(1 — \)

Lj0,4cn (1—cn)9A + (1 —en)ox + max(2cy — 1,0)05_1 (1.13)

and its Stieltjes transform, denoted fx(%), is equal to

- z2=2(1—cn)+/2(z —den(1 - cn))
tn(z) = 2(1—2)z

(1.14)

for each z € CT, where we define function z — /z for z = |z|e??, 8 € (0,27) as /z = /|z]€*/2. Moreover, for
each € > 0, almost surely, for N large enough, all the eigenvalues of II,, yII x strictly less than 1 would belong
to [0, 4cy(1 — ) + €. In our context, the structured matrices W), y and Wy y are not mutually independent,
and their elements are not i.i.d. However, we establish that the above results remain true. For this, we use
the Stieltjes transform approach and evaluate the asymptotic behaviour of the resolvent of matrix IL, yIIf x.
In order to be able to use Gaussian tools, the matrices II, y and II; y should be differentiable functions
of the entries of matrices W), v and Wy y respectively. However, this is not the case when these entries are
such that W, NW; N or Wy, NW}*’ n are not invertible. In order to address this technical problem, we use a
regularization scheme introduced in [21]. We introduce 7y defined by

nn = det [p(Wr nW; y)ldet [p(Wp NW, n)],

where ¢ is a smooth function such that

6(0) = 1 for A€ [(1—/e)® — e, [(1+ y/ex)? + €],
0, for A € [—o0, (1 — /cx)? — 2] U [(1 + \/cx)? + 2¢, 400

and ¢(A) € (0, 1) elsewhere. As ny = 0 if W; yW/y is not invertible for i = p or i = f, nnyIl; N, considered
as a function of the entries of W), v and Wy y, is a differentiable function whose derivatives are bounded
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polynomially. Moreover, it is shown in [32] that the empirical eigenvalue distribution of W; yW7y for i =
{p, f} converges towards the Marcenko-Pastur distribution, and that almost surely, for N greaéer than a
random integer, its eigenvalues located in the neighbourhood of [(1 — \/cx)?%, (1 4 /cx)?]. Therefore, almost
surely, for N large enough, ny = 1, and nyIl; ;v = II; 5 for i = {p, f}. The almost sure behaviours of the
resolvents (IL, NI n — zI)*1 and (nyIL, NynIle N — 21)71 thus coincide. In this chapter, we thus study the
resolvent Qn(2) = (v, NnIly N — 21 )~! using the integration by parts formula and the Nash-Poincaré
inequality (we again use in Chapter 5| a notation used to denote a different object in Chapter . As in
Chapter [3| we rather evaluate the behaviour of the resolvent

2) = QNW(Z) QN,pf(Z)
Qve) = ( Qn.pp(2) Qu,sr(2) )

of the 2N x 2N block matrix

0 nnll N)
My = PN
N (UNHf,N 0

and deduce the results on Qn(z) using the identity Qn pp(2) = 2Qn(22). If tx(2) represents the Stieltjes
.- 1 /~ . . 7 1—
transform of the probability measure v (n — (1 —cen)dp) (i-e. tN(z~) is defined by cntn(2) = tn(2) +—2),
we establish that, in a certain sense, Qu pp and Qu, sy behave as 2t ~N(22) Iy while Q Npf and Qn rp behave
as tn(22)In. These results allows to justify that 7y — oy — 0 and, after some work, imply that for each
€ > 0, almost surely, for NV large enough, all the eigenvalues strictly less than 1 of IL, 11y belong to

[0,4ci (1 — ci) + €.

When the signal is present.

In the second part of Chapter [5] we finally assume that the useful signal u is present, and, of course do not
assume that Ry = I. We formulate the same assumptions on the useful signal than in Chapter [] except
that we replace the hypotheses related to the convergence of the empirical eigenvalue distribution of Ry and
of measure Sy defined by by the mild assumption that the r x r matrix sequence O% (I ® RN)*1 On
converges towards a positive definite matrix denoted G, in the following. After expressing the orthogonal
projection matrices II; y on the row spaces of ¥; y as a low rank perturbation of matrices HXVN (we now
denote by HZVN the projection matrix on the row space of W; y), and using the above results related to the
behaviour of the resolvent Q}/VV of HKNH%V, we eventually obtain a clear characterization of the eigenvalues
of IT, NIIf v that escape from the interval [0, 4c,(1 — c.)]. We establish that for N large enough, the number
of eigenvalues of II, yIIf ; that escape from [0, 4c,(1 — ¢,)] coincides with the number s of solutions of the

equation
te() 2 B
det (x <(1 - c)t*(x)> F) =0 (1.15)

that are larger than 4c,(1 — c.), where %, and t, represent the limits of the Stieltjes transforms ¢y and ty
(i.e. t.(z) is obtained by replacing cy by ¢, in (1.14)) and where matrix F, is the rank P matrix (because
Q, is itself a rank P matrix) defined as

Fo=(+a7'ca) T (T+ A6 A e, (1.16)
Using the explicit expressions of #,(x) and t.(x), we verify that when x increases from 4c,(1 — ¢,) to 1, then

; 2 2
x (%) increases from &~ < 1tolif e, < 1/2 and from - > 1to (13:*> if ¢, > 1/2. As matrix
1

F. has rank P and verifies F, < I, we deduce immediately from this that s = 0 if ¢, > 1/2. If ¢, < 55
s < P, and s coincides with the number of eigenvalues of matrix F, that are larger than 12*6* Finally, if
Tix = To4... > Tsx are the solutions of larger than 4c,(1 — ¢,), then the s largest eigenvalues of
II, NII; n converge towards 1« > o4 ... > Tsx. If e < %, it turns out that, under the assumption that the
smallest eigenvalue of Fj is strictly larger than lf*c* , § coincides with P, and that it is possible to estimate P
consistently as the number of eigenvalues of II,, NIy that are larger than 4c,(1 — ¢,). From the expression

l} this condition will intuitively hold if both the r eigenvalues of Ri y are large enough (thus making

matrix A;! small) and the canonical correlation coefficients between the past and the future of u large
enough as well (thus making the singular values of 2, large).
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Chapitre 2

Some notations and basic tools.

In this chapter we introduce the assumptions and notations which will be used throughout the manuscript
as well as some fundamental tools.

Assumptions
— We assume that L is a fixed parameter, and that M and N converge towards +oo in such a way that
ML
CN = 3 G, G > 0. (2.1)

This regime will be referred to as N — 400 in the following. In the regime , M should be
interpreted as an integer M = M (N) depending on N. The various matrices we have introduced
above thus depend on N and will be denoted Ry,Y} n,Yp N, . ... In order to simplify the notations,
the dependency w.r.t. N will sometimes be omitted.

— The sequence of covariance matrices (Ry)n>1 of M—dimensional vectors (vy,)n=1,.. n is supposed to

verify

al <Ry <bl (2.2)
for each N, where a > 0 and b > 0 are 2 constants. Ay y > Ao n > ... > Ay n represent the
eigenvalues of Ry arranged in the decreasing order and fi n,..., far,y denote the corresponding

eigenvectors. Hypothesis is obviously equivalent to Ay, v > a and Ay y < b for each N.
Notations

— Foreach 1 <i < 2L and 1 <m < M, f" represents the vector of the canonical basis of C2ML with 1
at the index m + (i — 1) M and zeros elsewhere. In order to simplify the notations, we mention that
if i < L, vector £ may also represent the vector of the canonical basis of CML with 1 at the index
m + (i — 1)M and zeros elsewhere. Vector e; with 1 < j < N represents the j —th vector of the
canonical basis of CV.

— For each integers | € Z and K € N such that K > [I|, we define K x K "shift" matrix JI(? as

(TK)is = 0 (23)

— RT and R~ represents respectively the set of all non-negative numbers and non-positive numbers, and
we denote R* = R\ {0}, R™* = R*"\ {0} and R™* = R~ \ {0}. We also define C* =z € C: Im(z) >0

— By anice constant, we mean a positive deterministic constant which does not depend on the dimensions
M and N nor of the complex variable z. In the following, x will represent a generic nice constant
whose value may change from one line to the other. A nice polynomial P(z) is a polynomial whose
degree and coefficients are nice constants.

— If (an)n>1 is a sequence of positive real numbers and if © is a domain of C, we will say that

a sequence of functions (fy(z))n>1 verifies fy(z) = O.(an) for z € Q if there exists two nice
polynomials P} and P such that |fy(2)] < ozNPl(\zDPg(m) for each z € Q. If Q = C*, we will

just write fy(z) = O,(ayn) without mentioning the domain. We notice that if Py, P» and @1, Q2
are nice polynomials, then Pl(‘z‘)P2<®) + Ql(’ZDQ2<®) < (PL+Q1)(|z]) (P2 + Qg)(m), from
which we conclude that if the sequences (fi,v)n>1 and (fo,n)n>1 are O;(an) on €2, then it also holds
fin(z) + fan(z) = Oz(an) on Q.
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— For any matrix A, |A|| and ||A||p represent its spectral norm and Frobenius norm respectively. The
transpose, conjugate, and conjugate transpose of A are respectively denoted by AT A and A*, for
matrix B of the same size A > B stands for A — B non-negative definite. If moreover A is a square
matrix, Im(A) is the Hermitian matrix defined by Im(A4) = 454

— C°(R,R) represents the set of all C* real valued compactly supported functions defined on R.

— If £ is a random variable, we denote by £° the zero mean random variable defined by

¢ =¢ —E&. (2.4)

Fundamentals tools
We remind here one of the basic tool in random matrix theory, i.e. the Stieltjes transform.

Let p be the finite measure with a support Supp(x) € R, then its Stieltjes transform f, is defined as

du(\

fulz) = / L), for each z € C\ Supp(p)
R A—z

We first state well known properties of Stieltjes transforms (see e.g. the Appendix of [27], the Appendix A

of [18], and the references therein).

Proposition 2.1. The following properties hold true :

1. Let f be the Stieltjes transform of a positive finite measure i, then

— the function f is analytic over CT,

—if z € C" then f(z) € Ct,

— the function f satisfies : |f(z)] < ImZ , for € C*

—if p(—00,0) = 0 then its Stieltjes transform f is analytic over C/R*. Moreover, z € Ct implies zf(z) € C*.
— for all ¢ € C°(R,R) we have

JRETEE hmlm{/gb x+zydm}

2. Conversely, let f be a function analytic over C* such that f(z) € C* if 2 € C* and for which sup,s. liy f (iy)| <
400 for some € > 0. Then, f is the Stieltjes transform of a unique positive finite measure u such that
w(R) = limy_, 400 —iyf(iy). If moreover zf(z) € Ct for z in C* then, u(R™) = 0. In particular, f is given

by

and has an analytic continuation on C/R*.
3. Let F be an P x P matriz-valued function analytic on CT verifying
~Im(F(2)) >0 if ze C*T
= sup,. [[iyF(iy)|| < +oo for some € > 0.
Then, F € Sp(R), and if ut is the corresponding P x P associated positive measure, it holds that
pf(R) = lim —iyF(iy). (2.5)

Yy—r+0o0
If moreover Im(2F(z)) > 0, then, F € Sp(RY).

One of the classical approach of random matrix theory is based on the fact that for the ensemble of random
hermitian N x N matrices My, the Stieltjes transform of its spectral distribution F(\) which is defined
as

1
F(\) = NC’ard{eigenvalues of My < A}
coincides to the +TrQn(z), where Qn(2) is the resolvent of matrix My which is defined by

Qn(z) = My —2)""
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It is well known that resolvent of hermitian matrix is bounded for z € CT and from classical linear algebra
we have so called resolvent identity, more precisely :

— QN (2)|| € (Imz)~!, for each z € CT

— The resolvent identity : zQn(z) = —In + Qn(2)Mn
these two properties will be used a lot throughout the manuscript.

We finally recall the 2 Gaussian tools that will be used in the sequel in order to evaluate the asymptotic
behaviour of corresponding resolvent. The corresponding proofs can be found for example in [39] and [11].

Proposition 2.2. (Integration by parts formula.) Let £ = [&1,..., ¢k be a complex Gaussian random
vector such that E{¢} = 0, E{¢T} = 0 and B{&€*} = Q. If T : (&) — T(£,€) is a C' complex function

polynomially bounded together with its derivatives, then
K
or(&
E{6T(O)} = ) QuE {8”} | 2.6)
— &

Proposition 2.3. (Poincaré-Nash inequality.) Let ¢ = [¢1,...,¢k]T be a complex Gaussian random
vector such that E{¢} = 0, E{&€T} = 0 and E{£¢*} = Q. IfT': (&) — T(&,€) is a C' complex function poly-

nomially bounded together with its derivatives, then, noting VeI = [%, . %]T and Vel' = [%’ ce %}T

Var{[(§)} < E{Vel(§)TQVE(©) | +E{VeL(§) QV(©)} (2.7)
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Chapitre 3

Large empirical autocovariance matrices
between the past and the future

This chapter is dedicated to the study of the singular values of matrix R,%\ , or equivalently of the eigenvalues

Py
of Rﬁpy(Rf;'p y)*, in the case when the signal is absent, i.e. y, = v,. In this context, it thus holds that
ﬁ%% N = ﬁVp N and ﬁYﬁ N = ﬁvﬁ ~- In the following, we denote by W), y and Wy y the normalized
matrices . .
Won=—"=Von, Wy =—=Vin.
D, \/N b, f?N \/N va

We recall that the resolvent Qn(z) of Wy, NW; W, NW}" N is defined by

* * -1
Qn(z) = (Wf,NWp’NWp,NWﬁN — ZI) . (3.1)
As the direct study of @n(z) is not obvious, we rather introduce the resolvent Qx(z) of the 2M L x 2M L
block matrix
0 W; NW*N)
My = A i . 3.2
o <WP,NW;,N 0 (3.2)

It is well known that Qx(z) can be expressed as

2QnN(2?) QN ()W Wy )

QN(Z) = ( Wp,NW}iNQN(ZQ) ZQN(Z2) (3'3)

where Qn(z) is the resolvent of matrix Wy nWi Wi NnW, - As shown below, it is rather easy to evaluate
the asymptotic behaviour of Qx(z) using the Poincaré-Nash inequality and the integration by part formula
(see Propositions [2.3|and [2.2| below). Formula (3.3]) will then provide all the necessary information on Qn(z).

In the following, every 2M L x 2M L matrix G will be written as

Gpp Gpr
G = PP p ,
(Gfp fo)

where the 4 matrices (Gjj)i jep,f are ML x M L. Sometimes, the blocks will be denoted G(pp), G(pf), -...

We denote by Wy the 2M L x N matrix defined by

Wy N
Wy =[.PN). 3.4
o <Wf,N> (34)

Its elements (Wit);)i§2L,j§N,m§M satisfy

L1
EAWI5 (Wi )™} = w5 Bt NOicejir+1
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where W/ represents the element which lies on the (m + M (i — 1))-th line and j-th column for 1 <m < M,
1< < 2L and 1 < j < N. Similarly, Q:’llzlzmQ, where 1 < mq,mo < M and 1 < 41,19 < 2L, represents the

entry (mq+ M (i1 — 1)), (me+ M(ia — 1)) of Q. Foreach j =1,..., N, {wj}j-vzl, {wp,j};v:l and {wfvj}évzl are
the column of matrices W, W), and Wy respectively.

3.1 On the literature.

The large sample behaviour of high-dimensional autocovariance matrices was comparatively less studied than
the high-dimensional covariance matrices. We first mention |26] which studied the asymptotlc behaviour of
the eigenvalue distribution of the hermitian matrix R + R* where RT is defined as RT =% Zn | Tngry,
where (zy,)nez represents a M dimensional non Gaussian i.i.d. sequence, the components of each vector z,,
being moreover i.i.d. with zero means and unit variance. In particular, E(z,x}) = I. It is proved that the
empirical eigenvalue distribution of R. + ]%j converges towards a limit distribution independent from 7 > 1.
Using finite rank perturbation technics of the resolvent of the matrix under consideration, the Stieltjes trans-
form of this distribution was shown to satisfy a polynomial degree 3 equation. Solving this equation led to an
explicit expression of the probability density of the limit distribution. |31] extended these results to the case
where (2,,)nez is a non Gaussian linear process x, = > /=% A1z, where (2,,)nez is i.i.d., and where matrices
(A;)i>0 are simultaneously diagonalizable. The limit eigenvalue distribution was characterized through its
Stieltjes transform that is obtained by integration of a certain kernel, itself solution of an integral equation.
The proof was based on the observation that in the Gaussian case, the correlated vectors (z,)nez can be
replaced by independent ones using a classical frequency domain decorrelation procedure. The results were
generalized in the non Gaussian case using the generalized Lindeberg principle. We also mention [2] (see also
the book [3]) where the existence of a limit distribution of any symmetric polynomial of (R, R*).cr for
some finite set T" was proved using the moment method when z is a linear non Gaussian process. [28] studied
the asymptotic behaviour of matrix RTRi when (xy,)nez represents a M dimensional non Gaussian i.i.d.
sequence, the components of each vector x,, being moreover i.i.d. Using finite rank perturbation technics, it
was shown that the empirical eigenvalue distribution converges towards a limit distribution whose Stieltjes
transform is solution of a degree 3 polynomial equation. As in [26], this allowed to obtain the expression
of the corresponding probability density function. Using combinatorial technics, [28| also established that
almost surely, for large enough dimensions, all the eigenvalues of RT]:Zj are located in a neighbourhood of
the support of the limit eigenvalue distribution. We finally mention that [29] used the results in 28] in order
to study the largest eigenvalues and corresponding eigenvectors of RTRi when the observation contains a
certain spiked useful signal that is more specific than the signals (u,)nez that motivated this thesis.

We now compare the results of the present chapter with the content of the above previous works. We first
study a matrix that is more general than RTﬁii While we do not consider linear processes here, we do not
assume that the covariance matrix of the i.i.d. sequence (vy,)nez is reduced to I as in |28|. This in particular
implies that the Stieltjes transform of the deterministic equivalent vy of 7y cannot be evaluated in closed
from. Therefore, a dedicated analysis of the support and of the properties of vy is provided here. We also
mention that in contrast with the above papers, we characterize the asymptotic behaviour of the resolvent of
matrix Wy, NW ~W NW;, n While the mentionned previous works only studied the normalized trace of the
resolvent of the matrices under consideration. Studying the full resolvent matrix is necessary to address the
case where a useful spiked signal u is added to the noise v. We notice that the above papers addressed the
non Gaussian case while we consider the case where v is a complex Gaussian i.i.d. sequence. This situation
is of course simpler in that various Gaussian tools are available, but appears to be relevant because in the
context of the present thesis, v is indeed supposed to represent some additive noise, which, in a number of
contexts, is Gaussian.

We finally mention that some of the results may be obtained by adapting general recent results devoted to
the study of the spectrum of hermitian polynomials of GUE matrices and deterministic matrices (see [6]
and [34]). If we denote by Zy the M x (N +2L —1) matrix Zy = (v1,...,UN+21—1), then Zx can be written
as 4y = R%QX ~ where the entries of X are i.i.d. complex Gaussian standard variables. Each M x M
block Xy k. (1 <Ekl<L)of Xy = nyNW NW NWfN is clearly a polynomial of Xy, X% and various
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M x M and M x (N + 2L — 1) deterministic matrices. Assume that M < N + 2L — 1. In order to be back
to a polynomial of GUE matrices, it is possible to consider the L(N + 2L — 1) x L(N + 2L — 1) matrix Xy
whose (N 4+ 2L — 1) x (N + 2L — 1) blocks are defined by

= by 0
ZN,k‘,l — < A[S?k;l 0 > )

It is clear that apart 0, the eigenvalues of ¥y coincide with those of Xy. If Xy is any (N4+2L—1)x (N+2L—1)
matrix with i.i.d. complex Gaussian standard entries whose M first rows coincide with Xy, then, it is
easily seen that each block of £y coincides with a hermitian polynomial of X N,f(;{, and deterministic
(N +2L —1) x (N +2L — 1) matrices such as

~ Ry O

Ry = ( v 0 ) |
Expressing X as the sum of its hermitian and anti-hermitian parts, we are back to study the behaviour of
the eigenvalues of a matrix whose blocks are hermitian polynomials of 2 independent GUE matrices and of
(N +2L —1) x (N + 2L — 1) deterministics matrices. Extending Proposition 2.2 and Theorem 1.1 in |6] to
block matrices (as in Corollary 2.3 in [34]) would lead to the conclusion that 7y has a deterministic equivalent
vy and that the eigenvalues of Wf,NW;NWp,NW}iN are located in the neighbourhood of the support of vy .
While this last consequence would avoid the use of the specific approach used in section [3.7] of the present
chapter, the existence of vy is not a sufficient information. vy should of course be characterized through its

Stieltjes transform, and we believe that the adaptation of Proposition 2.2 and Theorem 1.1 in [6] is not the
most efficient approach.

3.2 Use of the Poincaré-Nash inequality.

In this paragraph, we control the variance of various functionals of Qx(z) using the Poincaré-Nash inequality.
For this, it appears useful to evaluate the moments of ||Wy||. The following result holds.

Lemma 3.1. For any | € N, it holds that sup >, E{[|Wn "} < +o0.

Proof. We first remark that it is possible to be back to the case where matrix Ry = Ij;. Due to the
Gaussianity of the i.i.d. vectors (v,)n>1, it exists i.i.d. N.(0, ) distributed vectors (vijgn)n>1 such that
E(viianv}y ,,) = Inm verifying v, = R}\{Zviid’n. From this, we obtain immediately that the 2M L x N block
Hankel matrix Wiiq,n built from (vy, jiq)n=1,. N satisfies

RY?
Wy = Wiia,N- (3.5)
RY?
As the spectral norm of Ry is assumed uniformly bounded when N increases, the statement of the lemma

is equivalent to supy E{||W;al*} < +oo. It is shown in [32] that the empirical eigenvalue distribution of
Wiia NWi, v converges towards the Marcenko-Pastur distribution, and that its smallest non zero eigenvalue

and its largest eigenvalue (which coincides with |[Wj;q n||?) converge almost surely towards (1 — /c;)* and
(1 + /cx)? respectively. We express E{||Wi;q||*} as

E{|[Wiiall*} = B{IWiial ' 1jwsz< 1+ vemyz+s } + EXUWaial* Lywioaj2s (14 eny246 )
< £+ B{IWial B L ywiagz> 01 vemze) < 6+ B Wil 2 PE{Lw,0j2> 14 vez6

where k > 0 is a nice constant. As E{||W; ;4 ||} = O(N?), it is sufficient to prove that E{Lw, 12> +ve)2+s)
is less than any power of N~!. We introduce a smooth function ¢q defined on R by

Do) = 1, for A € [—o0, —6] U [(1 + \/cx)? + §, +o0],
"0, for A€ [—6/2, (14 en)? +6/2)
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and ¢o(A) € (0, 1) elsewhere. Then, it holds that

E{Lyw,a12> vzt = E{In o wiaws > (14 venzst < PTrdo(WiiaWiig) = 1]
< E{(Treo(WiiaWiia)) >}

for any k € N. Lemma thus appears as an immediate consequence of the following lemma.

Lemma 3.2. For each smooth function ¢ such that ¢(X) = 0 if X € [=6/2, (1 + \/cx)* + 5/2] and ¢(N\)

constant on [—oo, —8] U [(1 + \/cx)? + 8, +oc], it holds that Vk € N, E {(Trgb( ndW;;d))Qk} < W

Proof. We prove the Lemma by induction. We first consider the case £ = 1. For more convenience we will
write W instead of W4 in the course of the proof. Here and below we take sum for all possible values of
indexes, if not specified. From ({2.7]) we have

. OTrp(WW*) iy OTEA(WW™)
Var{Trp(WW*)} <) E { <m1> E{wm Wi Yo
oW, g1 2 W,
OTrp(WW* i e (OTEO(WW* '
+ ZE{ ow™m )E{ 11,;1 Z2,J2} < aw(/mz )> } : (3’6)
11,71 12,72

We only evaluate the first term, denoted by v, of the right handside of (3.6)), because the second one can be
addressed similarly. For this, we first remark that

OWWwW*
oW

Zl»]l

OTrp(WW™*) , .

11,71

) (¢ (WwHw)"

Plugging this into (3.6 we obtain

¢ Z { WW*)W)*ml 6m1,m25i1+j1,’£2+j2 (¢,(WW*)W)m2 }

12,72

Denoting [ = i1 — 49, it is easy to verify that ¢ can be written as

L—1
1/’:% ST OE{T (¢ (WwWHW) (I @ L) (¢ (WWHW) TV, (3.7)
I=—(L—1)

where we recall that matrix Jp is defined by (2.3)). For each ML x N matrices A and B, the Schwartz
inequality and the inequality between arithmetic and geometric means lead to

1 *e(u u
—TrB* VB

]. * *xe(u *e(u
'NTrA (1™ @ Iy) BT o

1 % pxe(u u
< o TA I © DA+

Therefore, since J;“J" & I,y < Iy and JiE™ 7@ < Iy

L ) e(u)
MLT r A (1 @ Tn) BJ

< %(T&"A*A + TvB*B). (3.8)
By taking here A = B = ¢/(WW*)W, we obtain from and (3.7)
Var{Tro(WW*)} < %E {Tr (¢/(WIV*))? WW*} . (3.9)

Consider the function n(\) = (¢'(\))?\. It is clear that n(\) is a compactly supported smooth function.
Therefore (see e.g. [32]), it holds that

E {MlLTr ((¢’(WW*))2WW*)} = /S n(N)durrpn(A) + O <Jé2)

MP,N
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where p1p7p v is the measure associated to Marcenko-Pastur distribution with parameters (1, ¢y) and where
Supn C [0,(1+ V/CN)?] represents the support of pppy. It is clear that for N large enough, the support
of ¢/ and Syrp v do not intersect, so that fS]VIPN n(AN)dprrp,n(A) = 0. Therefore, we obtain that

E {]\/}LTr ((¢’(WW*))2WW*)} =0 (1\1[2) :

This and lead to the conclusion that Var{Tr¢(WW*)} = O (N~2). To finalize the case k = 1, we
express E{(Tro(WW*))?} as E{(Tro(WW*))?} = Var{Tr¢(WW*)} + E{Tro(WW*)}2. [32, Lemma 10.1]
implies that E{Tr¢(WW*)} = O(N~1), which completes the proof for k = 1.

Now we suppose that for any n < k we have E{(Tr¢(WW*))?"} = O(N~2") and are about to prove that it
holds for n = k + 1. As in the previous case we write

2

E{(Tegp(WW*)*D} = Var{(Tro(WW*)* '} + (E{(Tro(WW™))+}) (3.10)

To evaluate the second term of the r.h.s. of (3.10]), we use the Schwartz inequality and the induction assump-
tion

B{ToV ) < (BT WP E(mem ) =0 (). G

We follow the same steps as in the case k = 1 to study the first term of the r.h.s. of (3.10)). Using again the
Poincaré-Nash inequality, we obtain that

Var{(Tro(WW*)F11 < %E {(Tr¢(WW*))2k Tr (¢’(WW*)2WW*)} .
Using Holder’s inequality, we obtain
Var{(Tro(WW*))F1) < %E {(Tw(ww*))?’““}kil E { (Tr(¢’(ww*)2ww*))’f“}kl“ . (312)

The properties of function n(\) = ¢’ (A\)2X imply that it satisfies the induction hypothesis and that it verifies
(3.11)), i.e. E{(Te(¢/ (WW*)2WW*))FH1} = (’)(ﬁ) Plugging this into (3.12), we get that

k
* K *
Var{(Tro(WW*))k1} < mIE{(Tm(WW ))2’”2}“1 .
From this, (3.11]) and (3.10), we immediately obtain
* K1 % _k K2
E{(Trop(WW*))2+21 < AR E{(Tro(WW )22 T e (3.13)

We denote by zx, y the term zj, y = N2 T2E{(Tr¢(WW*))?**2}. Then, (3.13)) implies that
2N < K1 (Zk,N)k/(k+1) + Ka.

This inequality leads to the conclusion that sequence (2zx, n)n>1 is bounded, or equivalently that
E{(Trop(WW*))2k+2} < ~airz as expected. This completes the proof of Lemmas and ﬂ |

We now evaluate the variance of useful functionals of the resolvent Qn ().

Lemma 3.3. Let (Fn)n>1, (GN)n>1 be sequences of deterministic 2M L x 2M L matrices and (Hy)n>1 a
sequence of deterministic N x N matrices such that max{supy ||En||, supy [|GN||, supy [[Hn||} < k. Then,
for each z € C*, it holds that

1 C(z)k?
Var {MLTrFQ} < (;)2“ (3.14)

1 . C(2)k®
where C(2) can be written as C(z) = Py(|2|)P2 (1%2) for some nice polynomials Py and Ps.
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Proof. We first prove 1) and denote by & the term & = ﬁTrF Q. The Poincare-Nash inequality leads
to

6\ wpym g 08
Var{£}§ Z E{(w) E{Wil,jlwlg,]Q}ang }

11,J1,M1 11,71 12,]2
12,J2,Mm2
o o\
mi 2
+ Z { oW {Wimlwiz,h} <8Wm2> }
“7J17m1 11,71 12,72
12,J2,M2

We just evaluate the first term of the r.h.s. that we denote by ¢. For this, we need the expression of the
derivative of Q with respect to the complex conjugates of the entries of W. We denote by IL,; and Iy, the
2ML x 2M L matrices defined by IL,; = (0 If‘gL) and Ily, = ( 0 ) Then, after some algebra, we obtain

Iy O
that
8 w5 m
() (1)L~ QL) ()T QL
i,J
= —QIL,;We; (fz’m)TprQ — QlppWe; (fz‘m)TprQ- (3.16)

From this, we deduce immediately that

23 1 m
= — IL,;QFQIL, W + I1,;,QFQII W)
aw?}lﬁ ML ( pf QEQIL W + 115 QEQUL, W)
Using that E{WzTL;Z,QJQ} = N Bmima0ii1j1,i2+j2, We obtain that ¢ is given by
1 *
¢ = NML? > (€)M QFQIL W + I, QFQILp, W) 7 Ruymy
Zl7]lym1
12,J2,M2

X 521+J1,l2+]2 (fmz) ( PfQFQprW + HfPQFQHfPW)ej2‘

We put u = i1 —is and remark that > £ Rynym, (£2)T = Jze(u)®R and that . . _ ejel =

e
mi,mo,t1 —i2="u 1] Jo—J1=u “J27 71

J;;(u). Therefore, ¢ can be written as
1 L—1 1
o= wBl X G TLrQFQILW + 11,QFQIU,W) (/1 & R)
u=—(L-1)
(I QEQILW + 115, QE QI W) T3 | (3.17)

1 *xe(u *e(Uu
Each term inside the sum over u can be written as mTrA*( L ®RY?)(J] ( )®I)(IL ®R1/2)AJN( ) where

the expression of the ML x N matrix A is omitted. As ||R]| is bounded by the nice constant b (see (2.2)),
l) and 1) lead to the conclusion that we just need to evaluate ﬁE{TrA*A}. Using the Schwartz
inequality, we obtain immediately that

E{TrA*A} < 2E{Tr (I, QFQIL,W)*IL, QFQIL,; W)} (3.18)
+ 2E{Tr (s, QFQILs, W) T 1, QFQIL s, W)}

Since (I, QFQILy¢)" 11,y QFQIL,; < [|Q[*|F|[* I and [|Q| < fz, we get that

1 « 1 *
MLE{TY((prQFQprW) I, QFQIL; W)} < (Tmz)* Falk MLE{TTW W}
1
< Gy IFPEAIWIP)
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Lemma, [3.7] thus implies that

1
i LE{Tr (s QF QIL, W)*IL,; QFQIL, W)} < £°P <Imz>

larly. Therefore, 1.' leads to ¢ < k2 NQP (Imz) This establishes (|3.14
To prove |i one can also use Poincaré-Nash inequality for § = 57 TrFQGW HW*. After some calcula-
tions, we get that the variance of £ is upperbounded by a term given by

for some nice polynomial P. The term ML]E{Tr (I, QFQIT ¢, W)*I1£,QF QIT¢, W)} can be handled simi-
-'

ﬁ E <MLTr(FQGWH) (FQGW H) + ﬁTr(FQWH)*(FQWH) +m+ n2> : (3.19)

where k1 is some nice constant, and where 7; and 7o are defined by

1 ) ) *

mo= 5T, QGWHW FQILW)* (I, QGW HW* FQIL, W),
1 ) ) *

e = 5o T, QGWHW* FQIL, W)" (IL;,QGW HW* FQIL;, W).

Using Lemma as well as the inequality QQ* < o 2 I, we obtain immediately (3 . This completes the
proof of Lemma 3.3 |

In the following, we also need to evaluate the variance of more specific terms. The following result appears
to be a consequence of Lemma (3.3 and of the particular structure (3.3) of matrix Q(z).

Corollary 3.1. Let (F} n)n>1 be a sequence of deterministic M L x M L matrices such that supy || Fi n|| < K,
and (Hn)n>1 a sequence of deterministic N x N matrices satisfying supy |[Hn|| < 1. Then, if z € CT and
Imz2 > 0, the following evaluations hold :

Var{MLTrFlQU( )} <k N2P1(|22|)P2 (ml?)’ (3.20)

where © and j belong to {p, f} ;

Var {mTr [HW 1L, 5, < 01 0 > Q(Z)HiszW]} < HZWP1(’Z2|)P2 (Imz2> , (3.21)

where i1, J1, 12, jo still belong to {p, f}, but verify i1 # j1 and iz # ja.
Proof. We first prove (3.20]), and first consider the case where i = j = p. We define the 2M L x 2M L matrix
F by F = < 131 8 ), and remark that TrFlQpp( z) coincides with ¢ = 7 TrFQ(z). We follow the

proof of (3.14)), and evaluate the right hand side of (3.18)) in a more accurate manner by taking into account
the particular structure of the present matrix F. It is easy to check that

1 x
—MLE{TI (prQFQprW) prQFQprW)}
1 * * * *
= mE{Tr (Wf QppFl prprFlQppr)}-
As Qgp(2) = WPW;Q(Z2), we obtain that

1

Qi (2)Qtp(2) = () WWy W, W Q(2%) < ‘|W‘|4(Irn7)2]

if Im(22) > 0. Therefore, it holds that

1

F{ Qi Qe F1 < w7 W] e !
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From this, using the expression of Q,, = 2Q(2?), we obtain similarly that
|2
(Im22)%"

W;Q;prQﬁprpFlQppr < ’€2||VV||6

Lemma [B.1] thus leads to the conclusion that

1
ML

2
* Yk * ) * R1lz
E{Tr (W7 QppFi Qi Qep F1QppWy) } < “2(Ixﬂz2|)4’

where 1 is a nice constant such that E(||Wy||®) < k3 for each N. Using similar arguments, we obtain that

1 . 2 51|22|2
SrE BT (T QFQIL V) T, QFQIL, V) < 62 2o

This, in turn, implies (3.20)) for i = j = p. As the arguments are essentially the same for the other values of
i and j, we do not provide the corresponding proofs.

In order to establish (3.21)), we follow the proof (3.15|) for F' = 1I;, < F01 8 ), G = I1,,j,. It is necessary
to check that the 4 terms inside the bracket of (3.19) can be upperbounded by /<;2P1(\z2|)P2(Imlzz) for nice

polynomials Py and P,. As above, the use of the particular expression of matrices (Qjj); jefrpy allows to
establish this property. The corresponding easy calculations are omitted. B

3.3 Various lemmas on Stieltjes transform

In this paragraph, we provide a number of useful results on certain Stieltjes transforms. We recall that if
K is a positive integer, then a K x K matrix-valued positive measure w is a oc—additive function from the
Borel sets of R onto the set of all positive K x K matrices (see e.g. |[42|, Chapter 1 for more details). In the
following, if A is a Borel set of R, we denote by Sps(A) the set of all Stieltjes transforms of M x M matrix
valued positive finite measures carried by A. S;(A) is denoted S(A).

We now state a quite useful Lemma.

Lemma 3.4. Let 3(z) € S(RY), and consider function B(z) defined by B(z) = z28(2?). Then B € S(R).
Moroever, it holds that

-1
G(z) = (-uM - %R) € Su(R)

» (3.22)
G(z) = (—zIM - %R) € Sy (RT)
and that o o
G(2) (G(2))" < Ima)?’ G(2) (G(2))" < Ime)?’ (3.23)
Finally, matrices G(z) and G(z) are linked by the relation
G(z) = 2G(2%) (3.24)

for each z € CT.

Proof. Let 7 be the measure carried by R™ corresponding to the Stieltjes transform 3(z). We first prove
that 3(z) is a Stieltjes transform. We first remark that if 2 € C*, then 22 € C — RT. 8 analytic on C — R+
thus implies that 3(z) is analytic on CT. Moreover, it is clear that

ImB(z) = Im > 0, whenImz > 0.

zdT(\) _/ Imz(A + [2[2)dT(N\)
Rt A—22  Jp+ A — 222

23



To evaluate 3(z) for z € CT, we write

[ f o,

Using that ’% — z‘ > ’Im(% — z)’ > Imz for z € CT and A > 0, we get that

1B(2)] < /R dr() _ 7(RY)

+ Imz Imz

From this and Proposition we obtain that 8(z) € S(R).

To prove , it is first necessary to show that G is analytic on CT. For this, we first check that m(z) =
1—c2B%(z) # 0 for z € Ct. Indeed, write B(z) = z + iy with y > 0, then m(z) = 1 — ¢?2? + c?y? — 2cayi.
Hence, if x = 0 we have m(z) = 1 + c?y? > 0, and if # # 0 then 2zy # 0 since y > 0. In order to establish

that matrix | —zIy — L(Z)R is invertible on CT, we verify that
1—c2B%(z)
cB(2)
Im ( 21 = 2320) R> <0 (3.25)
on C*. It is easy to check that
cB(2) B cImpB(2)(1 + |B(2) )
Im( zIp 1—62,32(Z)R>_ Imz I, 1= 2320)P R < —Imz .
Therefore, Imz > 0 and Im3(z) > 0 imply (3.25)). The imaginary part of G(z) is given by
Im(G(2)) = —G(2)Im | —zIp — L(Z)R (G(2))* > Imz (G(2) (G(2))") > 0.
1—c2B2(2)

Therefore, InG(z) > 0 if z € C*. We finally remark that lim,_, 4o, —iyG(iy) = Iy, which implies that
sup,~. [[iyG(iy)| < +oo for each € > 0. Proposition eventually implies that G € Sys(R). Moreover, if
TG is the underlying M x M positive matrix valued measure, (2.5)) leads to 7 (R) = I,;.

We prove similarly the analyticity of G(z) on Ct. We first check that 1 — 2¢2%(2) # 0 if z € C*, or
equivalently that |1 — 2¢23%(2)| # 0 if z € C*. We remark that

11— 2¢*6%(2)| = |28(2)]|c*B(z) — zﬂl(z)| > Imz Imf(z) Im <c2ﬂ(z) — zﬂl(z)> . (3.26)
As B € S(RT), it holds that Im (C2B(z) - Zﬁl(z)) > 0 if 2 € C*. Therefore, 1 — 2¢?32%(z) # 0 if z € CT. As
above, we verify that

czf(2) B czf(2)
For this, we remark that
czf(2) B c 9
Im (1 — z(cﬁ(z))z) = 1= 2B )P (Im(28(2)) + |2¢B(2)["ImB(z)) > 0

if  z € Ct, which, of  course, leads to (13.27)). Therefore, matrix

cB(2)

1 — z(cB(z))?
mediately that

—zIy — R) is invertible if z € CT, and G is analytic on CT. Moreover, we obtain im-

Im(G(2)) = G(z) (Imz Iy +Im (%) R) (G(2))* > Imz (G(2)G(2)*) > 0 (3.28)

czB(z) 2) R(G(2)* > 0

Im(2G(2)) = G(2)Im (1—(5())
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for z € C*. As above, it holds that lim, , yo —iyG (iy) = I and that sup,. [|iyG(iy)|| < +oco for each € > 0.
This implies that G € Sy (RT), and that if 7C represents the associated M x M matrix-valued measure,

then 7¢(RT) = 1.

In order to establish (3.23), we follow [17, Lemma 3.1]. More precisely, we remark that
dr¢(\)  T¢(RT) I

mG(z) = Imz /R+ A — 2|2 < Tme Imz

Therefore, (3.28) leads to (G(2)G(2)*) <

completes the proof. B

m. The other statement of (3.23)) is proved similarly and this

Lemma 3.5. We consider a sequence (Bn)n>1 of elements of S(RT) whose associated positive measures
(Tn)N>1 satisfy for each N > 1

~(RT) = %TYRN (3.29)
as well as ) )
/R+ Adrn(A) = en 57 TrRy MTrR%V. (3.30)
Then, it exist nice constants w, k such that
ImBy (z) > (wfﬁzm (3.31)
and 5
1—z(enBn(2))?| > m (3.32)

for each z € CT and for each N > 1. Moreover, if Bn(2) is defined by Bn(2) = z Bn(22), then, we also have

3
ImBy(z) > m (3.33)
and , 6
‘1 — (cNBN(Z)f) > m (3.34)

for each z € C* and for each N > 1.

Proof. We first establish (3.31]). ImBxn(2) is given by

ImfBy(2) :Imz/ drv (V)

R+ ’/\—212.

For each w > 0, it is clear that

dTN()\) @ dTN()\) TN([OWJ])
/R+ A — 2z = /0 A=z - 2(N% + [2[?)

Assumption (2.2)) and (3.30) imply that the sequence (7y)n>1 is tight. For each € > 0, it thus exists w > 0
for which 7y (Jw, +00[) < € for each N, or equivalently, 7n5([0,w]) > 7n(R) — €. As 7y(RT) = LTr(Ry) >
a, we choose ¢ = a/2, and obtain that the corresponding w verifies 75 ([0,w]) > a/2 for each N. This

completes the proof of (3.31)). We now verify (3.32]). For this, we use (3.26)). As Im (W) < 0, it holds

that Im (c?vﬂ]v(z) - ﬁ(z)) > 3 ImBy(2). Therefore, we obtain that

\1 ~ 2 (enBn(2))?] > & Tmz (ImBx(2))2 (3.35)

which implies (3.32)).
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We finally verify (3.33)) and (3.34). For this, we first express By (z) as

B (z) = 2Bx(22) = /

R+ A — 22

© _drv(\)

which leads immediately to

ImBy(z) = Imz / At lef dTn(N)

1
ot deN(}\) Z Imz |Z|2/

R+ |)\ — 22|2

> (Imz)? /R SIS

A =222
We observe that for w > 0, then,
/ bty (/\)>/w1d (A)>; ([0, w))
e A 2P0 VS N TN = g g gy TR

As justified above, it is possible to choose w for which 7 ([0,w]) > § for each N. This leads to (3.33).
We now remark that |1 — c48%| = |ﬁNHBiN — ABn|- As ImBy > 0 on C*, it holds that

1 1
’ — C%V,@N’ > 'Im ( — C?V,BN>' > c?vlmﬁ]v.
BN BN
Using that |Bn| > ImBy, we eventually obtain that
1= ABR = ¢ (ImBy)”

which, in turn, implies (3.34). B

3.4 [Expression of matrix E{Q} obtained using the integration by parts
formula

We now express E{Q(z)} using the integration by parts formula and deduce from this an approximate
expression of E(Q(z)). For this, we have first to establish some useful properties of E{Q(z)} that follow from
the invariance properties of the probability distribution of the observations (y,)n=1,.. n. In the following, for

k,le€{1,2,...,L}, we denote by Q’f,’ll) and Q];f’l the M x M matrices whose entries are given by (Q]f,’rl,) =
m,n

k,l
(QPP)(kfl)Mer,(lfl)MJrn and (fo > = (Qﬁ')(kfl)M+m,(lfl)M+nf0r each m,n € {1,2,..., M}.

m,n

Lemma 3.6. The matrices E{Qpp} and E{Qg} are block diagonal, i.e. E (Qg’é) = E{ngf’l} =0ifk#I,

and

TrE{Qpp}(IL ® R) = TrE{Qa } (1L ® R), (3.36)
E{Qp¢} = E{Qgp} =0. (3.37)
Proof. To prove 1 , we consider the new set of vectors z, = e *%y; and construct the matrices Zy, Ly

in the same way as Y, and Y;. It is clear that sequence (z,)ncz has the same probability distribution that
(Yn)nez- Zp and Zy can be expressed as

eIy ... 0 1 ... 0
Zp = : : ol: - : )
0 oe bt 0 ... e W=Dt
e Ly ... 0 1 ... 0
27l D R E :
0 ...oe b, 0 ... e W-Dib
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Therefore, it holds that
B_ZHIM ce 0 €iGIM ce 0
ZyZyZpZy = 1 e : YiY, VY S
0 ce €_LMIM 0 ce eLiOIM

—zIng %252

-1
Similarly to Q we define matrix Q% = < ) and obtain immediately that

~ZpZ} —zIur

6_iGIM 0 eiGIM 0

E{Q%,} = S : E{Qpp}

0 . e_LwIM 0 c. eLiGIM
Since E{QZ,} = E{Qpp}, then for any M x M block E{Qpp’*}, we have
E{Qpp”*} = ¢ /E{Qpp? "}’ = e TIE{Qpp ).

This proves that ]E{Qppj’k } =0if k # j as expected. A similar proof leads to the conclusion that E{Qg} is
block diagonal. Moroever, the equality E{Q?p} = E{Qfp} implies that

e_iOIM 0 ewIM 0

E{Qf} =" S : E{Qip}

0 c. e_LiGIM 0 ce eLwIM

Therefore, each M x M block Qgp?* of Qgp verifies E{Qgp/} = e+ —RIOE{Qg, 7%}, As j — k € {—(L —
1),...,L — 1}, this implies that E{Qg,"*} = 0. This leads immediately to E{Qg,} = 0. We obtain similarly
that E{pr} =0.

To prove we consider the sequence z defined by z, = y_n+n+2or for each n. Again, the distribution of
zp, will remain the same and it is easy to see that Z), and Z; are given by

0 ... Iy 0 ... 1
Zr=| : HRAE e

Ipg ... O 1 ... 0

0 ... Iy 0o ... 1

Zp=| : S Yr | :

Iy ... O 1 ... 0

From this, we obtain that

0 ... Iy 0 ... Iy
E{Qpp) = | ¢ . | E{Qs} :
Iy ... O Ipg ... O

As E{Qgp} = E{Qpp}, this immediately implies that E{Qg’’/} = E{Qppoj’ij}, and, as a consequence,
that E{TrQpp(I1, ® R)} = E{TrQg (I ® R)}, as expected. W

In order to present the following approximation of E(Qx(z)), we introduce some useful notations. ay(z) is

the function defined by
1
aN(z) = mTI‘ (E{QN(Z)(IL X RN)}) . (338)
ay is clearly an element of S(RT). In order to evaluate its associated positive measure 7iy, we denote by

fin the positive measure defined by

ML
) 1 y .
din(A) = mei (IL ® R)fi 65, (3.39)
i=1
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where we recall that (j\i)izl,_..7ML and (fi)i:l,...,ML represent the eigenvalues and eigenvectors of WyW WPW}‘.

We remark that fiy is carried by R* and that its mass iy (R") coincides with 5;TrRy. Then, measure iy
is defined by

| oamo = ([ o) (3.40)
and satisfies 7iy (RT) = 5;TrRy. We also define cy(2) as the function
an(z) = zan(2?) (3.41)
which, due to the identity Qpp(2) = 2Q(2?), is also given by

1
ML

Lemma [3.4] implies that ay € S(R) and that the M x M matrix-valued functions Sy(z) and Sy(z2) defined
by

an(2) = = E{TrQu pp(2) (I, ® Rx)} (3.42)

~1
SN(Z) = — (ZIM + ]%RN) (3.43)

and

—1
Sn(z)=— (%R—i— z> = 2Sn(2%) (3.44)

belong to Sy (RT) and Sps(R) respectively. We are now in position to introduce the main result of this
section.

Theorem 3.1. The matriz E(Qn(2)) can be written as

E{Qn(2)} = I ® Sn(2) — En(2) (IL ® Sn(2)), (3.45)

where En(z) is an error term such that

—TrEN( VFy| < n; 1(]2]) Pa( !

UL Im z) (3.46)

for each z € C* and for each deterministic M Lx ML sequence of matrices (Fn)n>1 such that supysy [|[Fn| <
K.

In order to establish Theorem (3 . we express E{Q(z)} for z 6 (C+ by using the integration by parts formula
(see Proposition [2.2), and deduce from that the expressmn of E{Q(z)}. The properties of the error
term En(z) is ﬁnally deduced from the results of section

We recall that matrix M is defined by (3.2)). In order to express E{Q(z)} for z € C*, we use the identity

N *
2Q(2) = ~Ionz + Q)M = — Loy + > Q(2) ( o, ’]6“)?’1) . (3.47)

j=1 Wp,jWy,j

For every my,mg = 1,...,M, i1 = 1,...,2L and i, = 1,..., L we denote by Aznj;m the 2N x 2N matrix
defined by

A _ ( Amre(p) AT (o)) ) | (3.49)

1172

where the 4 N x N blocks are given by

(AR 03k = (Q (uy,)))5) (Wi
Am1m2 — wO. ml * mg’
(R 0P (Q(f].))’éﬂ( )i (3.49)
(AT () = (Q (757 )) i (Wi,
(A7 (fp))e = (Q (57 )i (wp ).



We also define matrix A2 by A™1™m2 — E{A™1™21 1mphes that

1172 1172 1112

ZB{Q[71"%(2)} = —0iyin0myma + TrAT" (pf)Liy<r, + TrAT ™ (fP)liy>1- (3.50)

1112 i192—L

In the reminder of this paragraph, we evaluate for each i1,i2, m1, mo the elements of matrix A;nj;m using
and (3.16] - As we shall see, each element of A"} can be written as a functional of matrix E{Q} plus
an error term whose contribution vanishes when N — +o00. Plugging these expressions of A?;;ng into
will establish an approximate expression of E{Q}. As the calculations are very tedious, we just indicate how

each element (A;nllQm2 (ff))jk of matrix A"/ ™*(ff) can be evaluated. By using integration by parts formula

and (| we obtain

Wt.j " * \m - mim, m,
- { <Q < 61])) i (wﬁk)i;} - Z ZE{QHZI:a SWzg-is-LJ Z2+L k}
11

iz3=1 m3

7’”’1
=) oW s

Z7.j
m’ mg

. 0 (Qirs e
_ Z Z E{WlTiLj i’,j’} > E{ (Qz1l3 2+L,k } N Z Z ngm

7,311
mm3

=11

mims
mim T7m2 Q’ilig
X OigtLtj,i'+5'E {ng *Omag,m/ Oigt+ L, Ok, + Wipip k™ }
,L'/vj/

L M L
1 1
=N Z Z E {Q:T;ngmgmgfsig,iz—(j—k)} N Z Z Ry Oig 4 L4045

i3=1mz=1 i37j/ /=1
msz,m’
(f) 1 3 Z2L
E 34 ma Wy 51 mi 7n’n13 X ..
xE {Wiz,k (Q ( 0’ ))“ Qi’—l—Lig} N Ringm O+ L4j,ir+j
iz I'=L+1
ms,m !

XE{W;);IQ (Q(wsj/))zl T"Z%} ZE{ ((Qpp) IL®R)>T‘1m2

2113

= 513,22 } AT Z Z 513+L+J { +J'E { <A:Tzl2m2(ff)) (pr(IL ® R))z ’i3 }

m’,j" i3,1'=
Z Z Oig+,i+5' I { (A?:;ng (pf)) (Qpp(IL ® R))z 'i3 } .
m Jlis,il=

Now we define for every iy = 1,...,2L, i2 = 1,..., L and m1,mg = 1,..., M 2N x 2N matrix B{";™* with
N x N blocks

mi,m2

Li<i, (j—k)—L<L>

Q
Qpp) (L ® R)}il,ig—(j—k)—L
mi1,mo

%s) (L@ R)}il,igf(jfk)
%i:) (I ® R)}ihig—(j—k)

mi,m2
1 Q mi,m2
(BZZZl?m <pf))j,k - NE {( QPE) (Il R)}il,iz—(j—k)—i-L Licia-G-m+r<t-

(B fp) - 3E
(BI(),, =
<

B2 () ) ~E
i k

Lici,—-m<r,

i1 Lici,—(j-m<i>

)

For every ML x ML block matrix D, we define the sequence (T(M) D)())i=—r+1,.....—1 as

M
1 1
MDY (1) = M—LTrD(Jg) @ In) =577 2. 2. D" (3.51)
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and the N x N Toeplitz matrix T]\(,A?(D) given by

L-1

WD) = S MDDy (3.52)
l=—L+1

In other words, the entries of T]\(,%)(D) are defined by the relation
[T(M)( )]jl i T D)1 = j2) 1< (3.53)

We observe that if D is block diagonal, i.e. if D;ml’;m = 0 for each mi,ms when i; # g, then, matrix

TN I ( ) coincides with the diagonal matrix ’TN L) (D) = (75 TrD) In. It clear that

L Z (&) aom)" ™ b = (BIE0N)

9113

In order to rewrite the term

L
¥ 5 dwennsiny < 2{ (AT00) | (@l R |

m’ ' is i’ =1

in a more convenient way, we put [ = ¢’ — i3, and remark that

Ly Z 5ZS+L+]Z+J,xE{(AEQmQ(ff)) (Qupl1s 0 R | =

m’,j" i3,4'=

Z Z (AZT;;"Z(ff))L+ lkML S QeI @ R

m/ l=—(L-1) i —i3=l

Using the definition (3.51]), this can be rewritten as

2 Z Z Oig+Ltjir+5' X B { <A;711112m2(ff)> (Quw(l e )7 } B

n@ jlig,i'=
L—-1

e Y B{(amran), Qe R o).

I=—(L—1)

We introduce j' = L + j — [, and using (3.53)), we notice that

L Z Z Oig+Ltjir+j' ¥ E { <A;711112m2(ff)) QI ® R } N

Wl Jl g =
N

xELS [T (Quplls ®R))L+jj/ (&'}gm?(ff))m _

=1 ’
e { (TR QeI © RATL™(£1)) } |

We obtain similarly that

N Z Z 523+gz+J/E{(A?f§§”2(pf)) (Qpp(IL ® R))75™ } -

m/,j’ i3,t'=

)

cNE { (zj(rj\g)(Qpp(IL ® R))AZL;:ZZ (pf>>ﬂf} .
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Therefore, matrix A"!™2(f f) is also given by

1112

(azimen),, = (Buen),, - b { (AT Quin o YA (D)}

]7

— e { (740 (Qualtz © RAZ )}

Writing Qgp and Qpp as Qfp = E{Qgp} + Q% = Q5 (see lb and Qpp = E{Qpp} + Qpp, we obtain
that

(a5im00),, = (BL™00), —CNE{(Tz%)(@pp(h®R>>Aﬁizm2<pf>>j,k}
_CNE{<T$><Q o mazen) |

We define the N x N matrix A"}2(ff) by

1119

mim M o mim
AT (f) = —enE { IR T (Qi (I © R)ATE™ (1) |
M o mim
— enE{ TP (@5 (1 @ RAL™ (0f) ).
Dropping the indices i1, 72, m1, me, we eventually obtain that
A =B — enE{ T (Qup (11 @ R)) } Apr + Agr.
Using similar calculations, it is possible to establish that :
Apf = Bpf —cnNE {T]\(ff‘g)(Qﬂ-‘(IL & R))} Ag + Apf,
Ag, =Bg, — cnE {T&%)(Qpp(h ® R))} App + Afp,
M
App = Bpp —cnE {T]\(]’L)(QH(IL ® R))} Afp + App,

where Apr, Agp,, and App are defined as

Apr = —enE{ T QeI © R) IR Ape | — enE{ T Qa1 @ R)Ag |
Ay = —enE{ ATV Qe (I © R)Ag | — enB{TU(Qpp(1 @ R)App |
App = —enE{ TP ( QeI @ R)TFApp | — enE{ TV (Q (1 @ R)Ary |

By Lemma matrices E{Qg} and E{Qpp} are block diagonal. Therefore, matrices E{TJ\(,]\? (Qe(IL®R))}

and E{T]\(% (Qpp (I, ® R))} reduce to MLIE{Terf(IL ® R)} Iy and 7 E{TrQpp (I ® R)} Iy respectively.
As E{TrQg (I ® R)} = E{TrQpp(IL ® R)} (see (3.36)), we eventually obtaln that

( I ArE (T Qpp (I ® B)} I
ML

A=B+ A. (3.54)
E{Terp(IL®R)}IN In )

Using (3.42), this can be written as

In—evanIN) A _ByA.
CNOéNIN IN
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Lemma, [3.4] implies that
I~ (eval2)? £ 0

if 2 € C*. This implies that the matrix governing the linear system (3.54)) is invertible for z € CT. Matrix
H given by

H-— ( Iy cna(z) IN>1 _

cNa(z) IN IN

is thus well defined for each z € CT. The blocks of H are of course given by

1
Hpp =Hg = ———— Iy
PP l—cNa(z)2
CNOZ
Hyr = Hg, = — valz) o

1-— c?\,a(z)2

(3.54) implies that A = HB +HA. (3.50) implies that we only need to evaluate matrices Ape and Ag,. We
obtain that these matrices are given by

Apf = prBpf + prBﬂ-‘ + prApf + prAﬁ',

f\fp = IIfPIBI)p + IIffISfp + IIfF,ZSI)p + Iiffzﬁkfp.

This and definition (3.49) of matrix Aj"}™* lead immediately to

1112

0 Ww; mima
(E{Q(ww: "07)}). = TRAL (o) Liasr + TRAT (D) Ligor =

1112

1 T[Y'<I3 Be 4+ A A ) mima 1
T 2oz (B —evaBir + Apr —enala ) Lisr
1 mimo
+ liTr (pr enaBpp + Agp — cNaApp) I P
— CNa i1i9—L

It is easy to notice that Tr (Bgp);7; " = Tr (Bpe); ;" = 0, and Tr (Bpp);";"* = E{(QILs¢(12L ® R));"; "% }

1119 1112 i1io+L 710

Tr (Bg);"1 ™ = E{(QIly, (L ® R))["17™}, where Iy = (§ ;2 ) and I, = (/42 0). Hence, using that

1112 Q119 0

E{Qpr} = E{Q¢p} = 0, we obtain that

({8t "0 ) - et aath )
HE{QU (e @ RY) T € = - (BlQUa o )T

mima2
Q112

where 8{7112-12”12 represents the remaining terms depending on the entries of matrix A’ . Using the identity

(3.47), we obtain that

E{Q} + e =E{Q (wyws 0 )} = —%E{Q}(IM ®R) +E, (3.55)
N

which immediately leads to

—HQ) <1_N2aa2

(I2L®R)+Z> =Ly — &
N

or, equivalently,
E{Q} (Ior ®S) ™" = Ly — &,

where we recall that S is defined by (3.44]). As E{Q} is block diagonal, (3.55|) implies that matrix & is also
block diagonal, i.e. & = Epe = 0. Moreover, it holds that

E{Q(2)} = Lo ® 8(2) — £(2) (2L ® S(2)) . (3.56)
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This allows to evaluate E{Q(z)} by identification of the first diagonal blocks of the left and right hand sides
of (3.56). We thus obtain immediately that

E{Q(z*)} = I ® S(2*) — Epp(2) (11 ® S(2?)) (3.57)

for each z € C*, where we recall that S(z) is given by($3.43). Therefore, Epp(2) only depends on z2. As the
image of CT by the transformation z — 22 is C — RT, we obtain that £pp(2) = E(22) for some function E
analytic in C — R™. This discussion leads to

E{Q(2)} = I; ® S(2) — E(2) (I, ® S(2)) (3.58)

for each z € C — RT.
In the following, we prove ([3.46)). For this, we establish following result.

Proposition 3.1. For each deterministic M L x M L sequence of matrices (F1 n)n>1 such that supysq ||[F1 n| <

K, then
1

Imz2

() )| < w73 A2 Pa() (3.59)

L
ML
holds for each z € Ct for which Imz? > 0, where Py and P, are 2 nice polynomials.
Finy 0

Proof. We define Fiy as the 2ML x 2ML matrix Fiy = ( 0 0

1
) and remark that mTrSF =

1 .
mTr(gpp(z) Fy n) can be written as
T EF = o 3 (WAL (0f) ~ caTr AT (1) Lines

11,12
mi,m2

i192—L i192—L 1211

( TrA™2 (fp) — caTrAM ™2 (pp)) 1i2>L)Fm2m1. (3.60)

1
As matrix F verifies F} 2" = 0 if iy > L, UL ——TrEF is reduced to the first term of the right hand side of

12,81

- that we now evaluate.

m
> TALeNEE s = 30 Y E{THLQa(I @ R (Q (1) ),
11,12 11,52,k i
mi,m mi,m2

x(why) Fm 4+ (THLQpe( @ RV (Q (uf) ) (whs), FE2™ Paes
= e TE{ T Qa1 @ R) () FQ () + TLQpe 0 R)IF () FQ () }
TE{ T, Qi (11 @ R)) (I, W) FQ (L, W)
+ TRL(Qpe (T © R)JRE (W) FQ (I, W) .

1
Similar calculations lead to the following expression of mTrSF :

1 *
VL EE = {a _CCN )MLTTE{TNL(QH(IL®R)) (W)™ FQ (1L, W)

+ TR QeI @ R)JFE (I W) FQ (I, W) = e (Qpp (I @ R)) (T W)* FQ (I, W)
— ca K THL(QR, (I @ R)) (T, W)" FQ (T W) | (3.61)
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We now evaluate the right hand side of (3.61]). The Schwartz inequality leads to

317 DB TRLQi 1 1) (1,9 FQUI, 1)

L-1

> B{r0Q5 (1 @ R0 (5O () FQ I, ) }‘
I=—L+1

L-1

1 ]. *€ * °
Z E{mTr(Q%(IL ® R)(Jg) ® IM))mTr(JN(l) (I W)" FQ (HPfW)) }
I=—L+1

L-1 1/2
1 1
< l_;ﬂ Var {MLTr(QH(IL ® R)(Jé’ ® IM))}

1 ) 1/2
x Var{MLTr<JN (I, W)* FQ (prW))} .

Using Corollary we obtain that

Var{j\;LTdQﬁuL@R)uS)®1M>>}s];m%r)&( . )

Imz2

and that

1 e ) 1 1
Var {mTr(JN(l) (IL,; W) FQ (prW))} < ﬁZmpl(‘zQDP? ( ) :

Imz2

Since L does not grow with N, this implies immediately that

1 . 1 !
mTrE{TJ\]}{L(Q%(IL ® R)) (W)™ FQ (I W) }’ < Kﬁpl(‘zﬂ)]% <Im22>

holds. It can be shown similarly that the 3 other normalized traces can be upper bounded by the same kind
of term. It remains to control the terms z and 7 EE For this, we use Lemma |3.5| for the choice

1 an
1—(CN aN) _(CN anN
Bn(z) = an(z). It is sufficient to verify that the measures (fiy)n>1 associated to functions (an(2))n>1

verify (3.29) and (3.30). For each N, it holds that

/OmduN(A) — /0+°odaN(A>} = TRy

" /o%o Adfiy(N) =E (/om AdﬂN(A)> =E (MlLTf((IL ® R)WfW;WpW;)) '

A straightforward calculation leads to E{ﬁTr(WfW; WW; )} = %TrRNTrR?V. Therefore, (3.32)) implies
that
1 < Au(la) P (-
11— 2(evan(2)? = V2 Tz

for each z € C*, and if 22 € Ct, it holds that

1

1= 22(envan(z?))?]

1
S

As apn(z) = zan(2?), this is equivalent to

o < PP ().

1—(en an) Imz?2
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Finally, we remark that |an(z)| < 4 TrRy Imz < b for each z € CT. Therefore, if 22 € C*, it holds that
o (2%)] <

(= )’ = |z|lan(2?)] Verlﬁes

1 o 1
an (] bzl 5 < B+ [2) .

This completes the proof of Proposition [ |

Proposition immediately leads to the following Corollary.

Corollary 3.2. For each sequence (F)n>1 of deterministic M L x M L matrices such that supy~, | Fy|| < &
we have

1 1 1
for each z € C*. In particular, it holds that
1 1 1
ST BN} ~ 10 Sy < 5 PP (s ) (3.63)

Proof. (3.57) implies that

ST (EBQv ) — 1 5x(2) Bl = |37

As Epp(2) = E(2?) and ||Sn(2?)| < IH}Z2 if 22 € C*, the application of Proposition to matrix Fy y =
Sy (2?)Fy implies that

]\IlL [(E{QN( )}_IL®SN(ZZ))FN]’</€NP1(|Z ’) < : >

Tl“gpp( ) (IL &® SN(Z2)) FN‘

Imz2

for each z such that 22 € C*. Exchanging 22 by z eventually establishes (3.62). This, in turn, completes the
proof of Theorem

3.5 Deterministic equivalent of E{Q}

3.5.1 The canonical equation

Proposition 3.2. If z € C", there exists a unique solution of the equation

1 zenty(2) -t
t = —TrRy | -2y — ——————R 3.64
N(z) Mo < sMTT 233 (2) N (3:64)

satisfying tn(z) € Ct and ztn(z) € Ct. Function 2 — tn(z) is an element of S(RT), and the associated
positive measure, denoted by uy, verifies

1 1 1
pun(RT) = MTrRN, /R+ Adun(A) =cn MTrRN MTrR?V. (3.65)
Moreover, it exists nice constants B and k such that
1 2 22
)1 ~2(ey tN(z))Q‘ (Imz)
for each N. Finally, the M x M wvalued function Tn(z) defined by
Tn(2) Iy 4 NN AT (3.67)
=—|z —_— .
N M- 23, 13,(2) N
belongs to Spr(RT). The associated M x M positive matriz-valued measure, denoted V%, verifies
vE(RT) = Iy (3.68)
as well as )
N = MTrRNu]TV. (3.69)
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Proof. As N is assumed to be fixed in the statement of the Proposition, we omit to mention that ¢ 5, T, un, - - -
depend on N in the course of the proof. We first prove the existence of a solution such that z — ¢(z) is an
element of S(R™). For this, we use the classical fixed point equation scheme. We define to(z) = —1, which is
of course an element of S(R™), and generate sequence (¢,(2))n>1 by the formula

boi1(2) = —TvR (=21 zetn(x) N
2)=—TrR | —zlpyy — ———+F— .
e M My 2c2t2 (2)
We establish by induction that for each n, t,, € S(R™), and that its associated measure p,, verifies p, (RT) =
ﬁTrR and

/ +OO Min (dN) = ciTr(R)iTr(RQ). (3.70)
0 M M

Thanks to (2.2, this last property will imply that sequence (pn)n>1 is tight. We assume that ¢, in-
deed satisfies the above conditions, and prove that ¢,1(z) also meets these requirements. Lemma
; -

1262(:2)()]%) is an element of Sy/(RT). According to Pro-

— zc?t2(z
position to prove that t,11(z) € S(RT), we need to check that Imt,1(z), Imzt,11(z) > 0 if 2 € CT,
as well as that limy, o iyt,+1(iy) exists. As T,, € Sy (RT) and t,11(z) = ﬁTrRTn(z), it is clear that
Imt,41(2), Imzt,,11(z) > 0. Finally, it holds that

implies that function 7,,(z) = (—zI M —

. . 1 C’Lytn(ly) -
iyt (i) 'R ( M e e Y

Since t,(2) is a Stieltjes transform we have —iyt,, (iy) — p,(RT), which implies that —iyt, 11 (iy) — 3 TrR,
i.e. that p,1(RT) = #;TrR.
We finally check that p,41 satisfies (3.70). For this, we follow [18].

Yy—r—+0o0

too 1 1
/0 Mint1(dA) = lim Re <—z’y(inTrRTn(iy) + MTrR)> .

We can express T;, as

1 cty, -1 1 R cty cty, 2 9
Tp=—-(Iy+—"R) =-=42 = R’T,
" z<M+1—202t% > z+zl—z02t% 1— 2c2t2 "

from which it follows that

1 1 czty 1 9 czty, 2 3
—z | =Tr(zRT, —TrR) )| = ———-—TrR —— | —=TrR°T,.
? <M H(zRTn(2)) + M )> 1—zc?t2 M e (1 - zc%%) Mo

Since —iyty (iy) — 3 TrR and t,,(iy) — 0 we can conclude that —iy(iy+; TrRT, (iy) + 1, TrR) — 25 TrRTr R?
as expected.

We now prove that sequence t,, converges towards a function ¢ € S(R™) verifying equation (3.64)). For this
we evaluate 0, = t,4+1 — tn

1 1 th —tn1)(1 2t
bn = - TeR(T — To1) = L g, 2l = o) (Lt 2ttt B

M (1—2c22)(1 — 222 )

ze(1 + 2cPtntn_1) iTrRT RT,
n n—L:

=0,
et (1—zc22)(1—2c2_ )M

We denote by f,(z) the term defined by

ze(1 4 zctutn_1) 1
n(z) = —TrRT,RT, ;. 3.71
Jul2) (1—z22)(1 — 222 )M g ! (371)
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Lemmalmphes that || Tx| <
that

and that |t;| < = for each k > 1 and each z € CT. Therefore, it holds

= ((Ili)? <1 * @'i)z» |

A)Q) For each € > 0 small enough, we consider

mz

1
ze(1+ zc2tntn_1)MTrRTnRTn_1

Moreover, it is clear that for each k, |1 — 2?2 > (1 — ¢?

the domain D, defined by e
={zeCT, (IEL)Q < e} (3.72)
Then, for z € D, it holds that
1 1 1
|1 —2c2| |1 — 2c2t2 4| = (1 — c%e)?
and that .
|fn(2)] < A=aoe (6+62) )

We choose € in such a way that (1_% (e + 62) < 1/2. Then, for each z € D, it holds that

1

Therefore, for each z in D, (t,(2))n>1 is a Cauchy sequence. We denote by t(z) its limit. (¢,(z))n>1 is uni-
formly bounded on every compact set of C —R™. This implies that (¢,(z))n>1 is a normal family on C —R™.
We consider a converging subsequence extracted from (¢,(z))n,>1. The corresponding limit t,(z) is analytic
over C — RT. If 2 € D, t.(z) must be equal to t(z). Therefore, the limits of all converging subsequences
extracted from (t,(z))n>1 must coincide on D, and therefore on C — R*. This implies that ¢, (z) converges
uniformly on each compact subset towards a function which is analytic C — R™, and that we also denote by
t(2). It is clear that t(z) verifies (3.64) and that ¢ € S(R*) and verifies (3.65). Moroever, Lemma 3.4 implies
that T € Syr(R™), while (3.69) and (3.68) are obtained immediately.

As ) holds, is a consequence of the application of Lemma [3.5] to the function By (z) = tn(2).

We now prove that if z € C* and ¢1(z) and t2(z) are 2 solutions of (3.64) such that ¢;(z) and 2t;(z) belong
to C*, i = 1,2, then t;(2) = t2(2). In order to prove this, we first establish the following useful Lemma.

Lemma 3.7. If z € CT and if t(z) verifies the conditions of Pmposz’tion then, it holds that
1—wu(z)>0 (3.73)

and
det (I-D) >0, (3.74)

where

D= (LA, u“) (375)

_ lezt(2)? 37 Te(RT(2)(T'(2))"R)
u(z) = ¢ ’1 () , (3.76)
1 Tr(RT(2)(T(2))"R)
M
v T (eHCIPE .17
Proof. Using the equation ¢(z) = 5;TrRT(z), we obtain immediately after some algebra that
Im(t(2)) Im(t(2)) 1 *
Im(z) _ “Im(z) 7Tr(RT(Z)(T(Z)) )
(i )-» (i )~ (2 | o
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The first component of (3.78) implies that

(1= u) e = o) BEE) L L))

Therefore, it holds that (1 —u(z)) > 0. Plugging the equality

Im(t(2)) B v(z) Im(zt(2)) 1 14 B e
Im(z)  1—u(z) Im(z) + 1—u(z) MT (RT(2)(T(2))")

into the second component of (3.78)) leads to

|2]202(2)\ Im(zt(z)) B |z]2v(2) 1
<1 —u(z) - 1-— u(z)) Im(z)  1—u(z) M

Tr(RT(2)(T(2))") > 0
and to .

To complete the proof of the uniqueness, we assume that equation (3.64) has 2 solutions ¢1(z) and to(2)
such that t;(z) and zt;(z) belong to C* for ¢ = 1,2. The proof of Lemma (see in particular ((3.26))
t.

implies that for i = 1,2, then 1 — z(ct;(2))? # 0 and matrix —zI — 1zcz2(tz2)()

— 2%t (z
by T1(z) and T5(z) the matrices defined by (3.67] - When t( ) =t1(2) and t(z)l: ta(z) respectively. u;(z) and
vi(2), i = 1,2, are defined similarly from and (| when #(z) = t1(z) and t(z) = ta2(z). Using that
ti(2) = 37 Tr(RTi(2)) for i = 1,2, we obtaln 1mmed1ately that

t1(2) — ta(2) = (w1,2(2) + 2v12(2)) (t1(2) —ta(2)),

R is invertible. We denote

where
() — czti(2)ezta(2) 37 Tr(RT (2) RTo(2))
1203 = T eh (2)D) (= 2(chal()) (379
and
o1a(2) = L Tr(RTy (2)RT>(2)) (3.80)

c .
(1= z(cta(2))?) (1 = 2(ct2(2))?)
In order to prove that t1(z) = t2(z), it is sufficient establish that 1 —w; 2(2) — zv1 2(2) # 0. For this, we prove

the following inequality :

1= u10(2) = zv12(2)] > V(1 =i (2)) = [2[o1(2) V(1 = u2(2)) — [2]va(2) (3.81)
which, by Lemma implies 1 —uia(z) — 21)1 2( ) 7é 0. For this we remark that the Schwartz inequality

leads to |uj2(2)| < \/ul )\ u2(z) and |vy 2(2)| < \/v1(2)y/v2(2). Therefore,
11— u12(2) — zv12(2)] > 1= y/ua( )\/U2(Z) — V201 (2)V/|2|v2(2)

We now use the inequality

Vab —Ved > Va— Vb —d, (3.82)

where a, b, ¢,d are positive real numbers such that a > ¢ and b > d. (3.82)) for a = b = 1 and ¢ = uy(2),
d = uy(z) implies that 1 — \/u1(2)y/u2(z) > /1 — u1(2)\/1 — ua(2). Therefore, it holds that

11— wr2(2) = 2012(2)] > V1 = wi(2)v/1 = ua(2) = V]z[v1(2)V/]2[va(2)

(13.82) for a = 1—uy(2), b = 1—ua(2), ¢ = |z|vi(z) and d = |z|v2(2) eventually leads to (3.81]). This completes
the proof of the uniqueness of the solution of (3.64) and Proposition |

Remark 3.1. and are still valid if z belongs to R™*. To check this, it is sufficient to remark if

z =x € R™*, the fundamental equation (3.78) is still valid, but Im(t((z))) and IHIII(T'?ES)) have to be replaced by

t'(x) and (xt(z)) where ' denotes the differentiation operator w.r.t. . The same conclusions are obtained
because t (x) > 0 and (xt(z)) > 0 if v € R
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3.5.2 Convergence

In this paragraph, we establish that the empirical eigenvalue distribution 7y of matrix Wy, NW;’ NWhp, NW;Z N
has almost surely the same deterministic behaviour than the probability measure vy defined by
L1 (3.83)
vy = —Trvy, :
N = g N
where we recall that v%; represents the positive matrix valued measure associated to Ty (z). For this, we first
establish the following Proposition.

Proposition 3.3. For each sequence (Fy)n>1 of deterministic M L x M L matrices such that sup s || Fn| <

K, then,
T T EQN () — [ @ T (=) Fx] - 0 (359

holds for each z € C — R™T,
Proof. Corollary implies that

1 1
12T E@N) ~ (153 Fw =0 (33 )
We have therefore to show that 17Tt (I, ® (Sy — Tw)) Fx — 0. It is easy to check that

ZCNQ zent

2
1—zcy

L (e —T)F = T, @ ) (

T T ) (IL ® RT)F

o2 1- 2CA 2
~zen(a—t) (14 zcyat) 1
(1 - 2c%a?)(1 — zc%t2) ML

Tr(I, ® SRT)F. (3.85)

We express o —t as o — ﬁTrRS + ﬁTrR(S —T), and deduce from 1} that

zen (14 zckat)
1 — zc%02)(1 — zc31?)

zen (14 zckat) 1
(1—zc4a?)(1 — 2c%4t%) ML

ST (1L (S~ T)) F = (a - AZTrRS) (

1 1
x 57 Tr(I ® SRT)F + - TrR(S —T) Tr(I, ® SRT)F. (3.86)

ML

l} implies that o — ﬁTrRS = Oz(ﬁ). Therefore, in order to establish li it is sufficient to prove
that ﬁTrR(S —T) — 0. For this, we take F' = I}, ® R in |i and get that

1

STR(S(2) ~ T(2)) = fv(2) 17 TRR(S() ~ T()) + Ox(355)

M M
where fn(z) is defined by

(3.87)

zc 2c2 o

fn(z) =

fn(2) is similar to the term defined in (3.71)). Using the arguments of the proof of Proposition we obtain

that it is possible to find € > 0 for which, supy=n, [fn(2)| < 3 for each z € D, for some large enough

integer Ng. We recall that D, is defined by 1’ We therefore deduce from li that ﬁTrR(S (z) —

1
T(z)) — 0 and mTr (Ip ® (S(z) —T(2))) F converge towards 0 for each z € D.. As functions z —

1
mTr (I, ® (Sn(2) — Tn(2))) Fn are holomorphic on C — Rt and are uniformly bounded on each com-

1
pact subset of C — R™, we deduce from Montel’s theorem that mTr (I ® (Sn(z) —Tn(2))) Fn converges
towards 0 for each z € C —R*. B

We deduce the following Corollary.
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Corollary 3.3. The empirical eigenvalue distribution Dy of Wf’NW;NWp’NW}kN verifies
VN —vN — 0 (3.88)
weakly almost surely.

Proof. Proposition implies that E{ ;7 TrQn(2)} — 4 Tr(T. ( )) = 0 for each z € C—R™. The Poincaré-
Nash inequality and the Borel Cantelli Lemma imply that o Tr(Qn(2)) — E{ 5z TrQn(2)} — 0 ass. for
each z € C — R*. Therefore, it holds that

mTr(QN( 2)) — %Tr(TN(z)) — a.s. (3-89)

for each z € C —R*. Corollary 2.7 of [18] implies that 7 — vy — 0 weakly almost surely provided we verify
that (Zn)n>1 is almost surely tight and that (vny)n>1 is tight. It is clear that

[ AdoyO) =57

_ Wp,N
W = ( Wi )

)

It holds that [|[Wx| < \/BHW“dNH where Wi;qn is defined by . As [Wian| — (1 4+ /cx) almost
surely (see [32]), we obtain that ﬁTer,NW;NWpyNW;{N is almost surely bounded for N large en-
ough. This implies that (Iy)n>1 is almost surely tight. As for sequence (vny)ny>1, we have shown that
sup N fR+ Adun(N) < 400. As uy = ﬁTI‘RNVT, the condition Ry > al for each N leads to

LTI'Wf NW;NWP,NW}:N S ||WN||4>

where we recall that

/R+ Adpn(N) > a / Advy(N).

R+

Therefore, it holds that supy [p+ Advn(A) < +00, a condition which implies that (vy)n>1 is tight. B

3.6 Detailed study of vy.

In this section, we study the properties of vy . implies that pun and vy are absolutely continuous one
with respect each other. Hence, they share the same properties, and the same support denoted Sy in the
following. We thus study px and deduce the corresponding results related to vy . As in the context of other
models, puy can be characterized by studying the Stieltjes transform ¢ (z) near the real axis. In the following,
we denote by M the number of distinct eigenvalues (le N)lzl,...,ﬁ of Ry arranged in the decreasing order,

and by (myn),_; 737 their multiplicities. It of course holds that Zl]\il myn = M.

3.6.1 Properties of ¢(z) near the real axis.

In this paragraph, we establish that if o € R**, then, lim, ,, ,cc+ t(z) exists and is finite. It will be de-
noted by t(zo) in order to simplify the notations. Moreover, when ¢ < 1, lim,_,o ,ec+ur+ [t(2)| = +o0, and
lim, o ,ec+ur+ 2t(2) = 0. The results of [43] will imply that measure . is absolutely continuous w.r.t. the
Lebesgue measure, and that the corresponding density is equal to %Im(t(m)) for each z € R™. When ¢ > 1,
a Dirac mass appears at 0.

We first address the case where xg # 0, and, in order to establish the existence of lim,_,,  ,ec+ t(2), we prove
the following properties :
— If (2n)n>1 is a sequence of Ct converging towards x¢, then [¢t(zy)|,~; is bounded
— If (21,n)n>1 and (22,,)n>1 are two sequences of C* converging towards g and verifying limg, , sz = ti
for i = 1,2, then t1 = to.

Lemma 3.8. If zg € R™, and if (2p)n>1 is a sequence of Ct such that lim, 4o 2, = xo, then the set
1t(zn)l,,>1 is bounded.
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Proof. We assume that |t(z,)] — +00. Equation (3.64) can be written as

ﬂz)—lﬁé X (3.90)
M —Zn(l + ‘1_CZtEZL()Z):Ll))2)

o~
—_

As zg # 0, the condition |t(zy,)| — +oo implies that it exists /g for which

ct(zn)xlo

L+ 1=z (ct(zn))?

-0

or equivalently

— Xl(r

Znct(zn) — e

As [t(2,)] — 400, it holds that z,ct(z,) — N, a contradiction because |z,ct(2,)] — +oo. B

Lemma 3.9. Consider (z1,)n>1 and (z2n)n>1 two sequences of Ct converging towards o € RT* and
verifying im;, | 0 t(2in) = ti for i =1,2. Then, it holds that ty = ts.

Proof. The statement of the Lemma is obvious if xy does not belong to S. Therefore, we assume that
x9 € S — {0}. We first observe that if lim,, o 2, = 2o (2, € CT) and t(z,) — to, then

1 —xq (cto)® # 0, (3.91)
cto Xl —

I+ —— #0,1=1,..., M. 3.92

+ 1— Z0 (Ct0)2 7é ) ’ ’ ( )

Indeed, if (3.91) does not hold, Eq. (3.90) leads to ty = 0, a contradiction because 1 — g (cto)? was assumed
equal to 0. Similarly, if (3.92) does not hold, the limit of ¢(z,) cannot be finite. Therefore, matrix T defined

: T:—< [H“ORD_l (3.93)
0 PO T T g (cto)2 '

is well defined, and it holds that 7T'(z,) — Tp and that tg = ﬁTrRTO. In particular, for i = 1,2, T'(z;) — T;
where T; is defined by 1D when tg =t;,1=1,2, and t; = ﬁTrRTi. Using the equation 1’ for z = 2 n,
we obtain immediately that

< t(zl,n) - t(ZZ,n) ) _ < UO(Zl,na Z2,n) UO(Zl,m ZQ,n) >
21nt(21,0) — 22,0t (22,n) 21 n22,000(21,m, 22,0) U0 (21,05 22,n)
t(z1.n) — t(22.0) ) < (21n — 22.n) ﬁTrT(zl n)RT (22.,) )
x ’ ’ +( T ’ o, 3.94
< 21 nt(21n) — 22.nt(22,n) 0 ( )

where ug(z1, 22) and vg(z1, 22) are defined by

cz1t(z1)czat(22) ﬁ’I‘r(RT(Zl)RT(ZQ))
(1= 21(ct(21))?) (1 = 22(ct(22))?)

uo(z1,22) = ¢ (3.95)

and
ﬁTr(RT(ZJ)RT(Z?))

vo(z1,22) = ¢
021 22) = T (tz)?) (1 = 2a(ct(z2))?)
for z; € C*, i = 1,2. Taking the limit, we obtain that

( ty —to ) _ ( ug(zo,0)  vo(To, To) > ( t1 —t2 )

xo(t1 — t2) zdvo(z0,20)  uo(z0,20) zo(t1 —t2) )’

where ug(zg, z¢) and vo(xg, xo) are defined by replacing z;, t(z;), T'(z;) by o, t;, T; in (3.95}3.96) for i = 1,2.
If the determinant (1 — ug(wo, 20))? — 2dvo(z0,20)? # 0 of the above linear system is non zero, it of course

(3.96)
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holds that t; = to.

We now consider the case where (1—ug(zg, z0))? —23vo(z0, 20)? = 0. We denote by u;(z) and v;(z¢), i = 1,2
the limits of u(z;,) and v(zi,), ¢ = 1,2 when n — +oo. We recall that u(z) and v(z) are defined by -

and (3.77) respectively. It is clear that u;(xo) and v;(zg) coincide with (3.76)) and (3.77)) when (z,t(2),T(2)
are replaced by (zo,t;, T;) respectively. (3.74]) thus implies that

(1 — ui(20))? — 2Bvi(z0)? >0 (3.97)

for i = 1,2. Using the Schwartz inequality and (3.82]) as in the uniqueness proof of the solutions of Eq. (3.64))
(see Proposition [3.2)), it is easily seen that

|(1 = uo(z0, 20))* — @ (vo(0, 20))?| = (1 = V/ua(0) v/ uz(0))* — agvi(wo)va (o)

> (1 — w1 (w0)) (1 — ug(w0)) — 2gv1(x0)v2(z0)
> /(1 — w1 (0))? — wui(20)2\/ (1 — uz(w0))? — auala)? > 0. (3.98)

Therefore (1 uo(:vo,mo))2 — z2vo(z0,70)? = 0 implies that the Schwartz inequalities and the inequalities
used to establish (3.98)) are equahtles Hence, it holds that |ug(wo, 20)|? = u1(w0)ua(xo), or equivalently
\MTr(RTlRT2)| = (3 Tr(RT Ty R))l/g( Tr(RTyT; R))Y/2. This implies that T} = aT3 for some constant
a € C. Moreover, as t; = ﬁTr(RTZ) for 1t = 1,2, it must hold that ¢; = at; follows from
{a=b=1, ¢c=wu(m0), d=uz(z0)} and {a = (1 — u1(x0))?, b= (1 —ua(w0))?, c=z3v?, d= 23v}. Slnce
all these terms are positive real numbers, vab — vVed = va — ¢v/b — d if and only if ad = be. It gives us

u1(wo) = uz(xo),

(1 — uy(z0))?x2va(20)? = (1 — ug(zo))?xdv1 (20)2. (3.99)

Since zg # 0 and vy (zg) > 0, the inequality (1 — ui(z0))? — z3v1(x0)?® > 0 implies that u;(z¢) # 1. Hence,
ui(zo) < 1 and implies that vi(zg) = va(zp). From the definition of u; and v; one can notice that
u; (o) = c2x3|t;|?vi(wo). Which gives us immediately |t1]? = [t2|? and, as a consequence, |a| = 1. Using once
again the fact that v (z¢) = va(zo) and 171 = a7, we obtain that

|a|? & Tr(T5 RRT) _ L Tr(RT>T5 R)
|1 — zoc?a?(t3)?|? 11— zoc?t3|?

The numerators of both sides are equal and non zero, from what follows that the denominators are also
equal, i.e.

11— zoc?a®(t3)?| = |1 — zoc?t3].

We remark that if w and z satisfy |1 —w| = |1 — z| and |w| = |z|, then, either w = z, either w = zZ. We use
this remark for w = zoc*t3 and z = woc?a®(t5)?. If w = 2, it holds that a?(¢5)? = 3 = 3 = 3 and since
Imt; > 0 we conclude t; = to. If w = 2z, we have a?(t5)? = (t3)2. If to = 0 then it also holds that t; = 0.
Otherwise, we have a = 1. If a = 1, the condition Imt¢; > 0, leads to the conclusion that t; and 9 are real
and coincide. We finally consider the case a = —1. We recall T1 = a1 = —T7. Therefore, it holds that

:E0t§
1 — zoc?(t5)?

$0t§

R= —woly — — 202
roiu 1 — zoc?(t3)?

zolp —
which is impossible, since xy # 0. This completes the proof of Lemma (3.9)). B

Lemmas [3.9) and [3.8] and their corresponding proofs imply the following result.

Proposition 3.4. For each z > 0, lim,_,, .cc+ t(2) = t(z) exists. Moreover, 1 — z(ct(x))* # 0, and matriz

(I + % R) is invertible. Therefore, lim,_,, .cc+ T(2) = T(x) where T(x) represents matriz T'(z) =

—1
(—x([ + % R)) . Moreover, t(z) is solution of the equation

H(z) = %Tr(RT(:r)). (3.100)
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If u(xz) and v(x) represent the terms defined by and for z =z, then it holds that
1—u(z) >0 (3.101)
and
(1 —u(x))? —2%(w()? >0 (3.102)

for each x # 0. Moreover, the inequality is strict if x € RT — S. If moreover Im(t(x)) > 0, then, we
have
1 —wu(z) —zv(r) =0. (3.103)

Proof. It just remains to justify (3.101)), (3.102), and (3.103). As function z — ¢(z) is analytic on C — S,
x — t(z) is differentiable on Rt — S. As (t(x))" > 0 and (zt(z)) > 0 hold on Rt — S, the arguments used

in the context of Remark are also valid on RT — S, thus justifying (3.101) and the strict inequality in
13.102). 1 — u(z) > 0 and inequality (3.102) also hold on & — {0} by letting z — z, z € C* in Proposition
@ As v(z) > 0 for each x # 0, the strict inequality (3.101f) is a consequence of (3.102]).

In order to prove (3.103)), we use the second component of (3.78), and remark that it implies that
Im(t(x)) = (u(x) + 2v(z)) Im(t(x)).
Therefore, Im(¢(z)) > 0 leads to (3.103]). W

We also add the following useful result which shows that the real part of ¢(z) is negative for each = > 0.
Proposition 3.5. For each x € R™, it holds that Re(t(z)) < 0.
Proof. It is easily checked that
Re(t(z) B u(z) —v(z2) Re(t(z) —Re(2) 4 Tr(RT (2)(T(2))*)
(retaion )= (o ) Crenon )+ ( i Eniarcney ) 100

for each z € C — S. Moreover, as all the terms coming into play in (3.104) have a finite limit when z — x
when x # 0, (3.104) remains valid on R*. For z = x, the first component of (3.104) leads to

Re(t(z))(1 — u(x) + zv(x)) = —m%Tr(RT(a:)T(x)*). (3.105)

Proposition implies that 1 — u(x) > 0, when x € R*. Therefore, 1 — u(z) + zv(zx) is strictly positive as

well, and it holds that
1 1

- STy
1z u(z) + xv(z) M
Therefore, x > 0 implies that Re(t(x)) < 0 as expected. B

Re(t(z)) = (RT(2)T(z)*). (3.106)

We now study the behaviour of ¢(z) when z — 0. We first establish that lim, .o ,cc+ur~ [t(2)| = +oo, and
then that lim,_,o ,cc+ur- 2t(2) = 0 if ¢ < 1 and is strictly negative if ¢ > 1. We recall that t(x) for z > 0 is
defined by t(x) = lim,_,, ,ec+ t(2). For this, we establish various lemmas.

Lemma 3.10. [t holds that lim,_,q ,ec+ur+ |t(2)] = +o00.

Proof. We assume that the statement of the Lemma does not hold, i.e. that it exists a sequence of elements
of CT UR* (2,)n>1 such that lim, o0 2, = 0 and ¢(z,) — to. (3.64)) and (3.100)) imply that

1 M my
2nt(zn) = —— oA T— (3.107)
M~ + ct(zn) M
I=1 T—2n (ct(zn))2
1+ % clearly converges towards 1 + ctg);. As the left hand side of (3.107) converges towards 0, for

each [, 1 + cto\; cannot vanish. Therefore, matrix I + ctoR is invertible, and taking the limit of (3.107)) gives

1
MTrR(I +ctoR) "L = 0.
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As Im MTrR(I + cth) cannot be zero if ty is not real, {y must be real. We now use the observation that
|2 |v(2,,) < 1 for each n (see Lemma 3.7 and Proposition [3.4]if 2, € Ct UR™, and Remark [3.1]if z,, € R™).
As |1 — zy(ct(2n))?? = 1, |2zn|v(2,) bounded implies that |Zn] MTr(RT(zn)RT(zn)*) is bounded It is easy
to check that

1 1
\zn]MTr(RT(zn)RT(zn) )= WMTI“(R(I +ctoR) IR(I + ctoR) 1) + O(1).
Therefore, the boundedness of |z, |4 Tr(RT (2,) RT (2,,)*) implies that - Tr(R(I+ctoR) ' R(I+ctoR)™!) =0
which is of course impossible. B

Lemma 3.11. Consider a sequence (zp)n>1 of elements of CT UR* such that lim,, o 2, = 0. Then, the
set (znt(2n))n>1 is bounded.

Proof. We assume that (2,,t(2y))n>1 is not bounded. Therefore, one can extract from (zy,)n>1 a subsequence,
still denoted (zy,)n>1, such that lim,_, o |2nt(2,)| = +00. Then,

ct(zn) B 1

= — 0.
1 — zp(ct(zn))? len) — zpt(2n)

Therefore,

g (et - — ——TiR
M 1— z,(ct(2n))? M T

This is a contradiction because the above term coincides with z,t(z,) which cannot converge towards a finite
limit. W

Lemma 3.12. Assume that (215 )n>1 and (22, )n>1 are sequences of elements of CTUR* such that limy, 400 2in =
0 and limy, 400 2Zint(zin) = 0; fori=1,2. Then, §; = da.

Proof. We first remark that |t(z; )| — +oo for i = 1,2. Equation (3.64) implies immediately that

1

)> %TrR <R + Ctzz) _ zct(z)> - (3.108)

2t(z) = (zct(z) - 4G

As len) =0, zinct(zin) — 2 (Z -5 co; for i =1,2. If §; # 0, Eq. 1’ thus implies that

-1
c MTrR (R + ct( AC zi,nct(zi,n)> converges towards 1, which implies that matrix R — ¢d;I is invertible.

Therefore, either 5 = 0, either §; is a solution of the equation
1
1=c—TrR(R — c&I)7 ! (3.109)
M
or equivalently, 9; verifies
;i = cb; TrR(R — o, )7L (3.110)
We note that the solutions of this equation are real, so that §; € R for i = 1,2. Eq. (3.94) leads to
21t (21,0) — 22,0t (22,0) = 21,022,000 (21,0, 22,0) (E(21,0) — t(22,0))
+ o (21,0, 220) (21,0t (21,0) — 22,nt(22,0))-

It is straightforward to check that 2,22 ,v0(21m, 22.0)(E(21,n) — t(22,,)) — 0 and that ug(z1,n,220) —
up(0,0) = ¢4z TrR(R — ¢511) ' R(R — ¢§,I)~*. Therefore, we obtain that

81 — 83 = ug(0,0)(81 — 82). (3.111)

We recall that |ug(z1n,22,)] < \/u(zl,n)\/u(zzn) < 1. Moreover, we observe that u(z,) — u;(0) =
e TrR(R — ¢6;1) "' R(R — ¢5;1)~! and that 0 < u;(0) < 1. The Schwartz inequality leads to

lug (0,0)] < /1 (0)y/uz(0) < 1. (3.112)
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If the Schwartz inequality (3.112)) is strict, |ug(0,0)] < 1, and §; = J2. We now assume that ug(0,0) =

u1(0)/u2(0) = 1. This implies that
R — 611 = k(R — cdol)

for some real constant k, or equivalently, \; —cd; = H(X,: cdgl for each | = 1,..., M. If R is not a multiple of

I, k must be equal to 1, since otherwise, we would have \; = Ay for each [,!’. Kk = 1 implies immediately that
2

51 = 2. We finally consider the case where R = ¢21. Then, (3.110)) implies that §; is solution of (52-% =9,

ie. 0; =0 or
6 =0 (1 — 1) . (3.113)

C

We now check that §; = 0,0y = o2 (% — 1) or 0o = 0,6 = o2 (% — 1) is impossible. If this holds, u1(0) and
u2(0) cannot be both equal to 1, and |ug(0,0)| < 1. Therefore, (3.111]) leads to a contradiction, and d; = do
is equal either to 0, either to o (% — 1). |

Lemmas and [3.12] imply the following corollary.

Corollary 3.4. If c <1, it holds that
lim zt(z) =0 (3.114)
2—0,2€CTUR*
and that

u({0}) = 0. (3.115)

Proof. Lemmas and lead to the conclusion that lim,_,q ,ec+r+ 2t(2) = 0 where § is either equal to
0, either coincides with a solution of the equation (3.110)). In order to precise this, we remark that t(z) > 0
if x < 0 implies that § < 0. Therefore, ¢ coincides with a non positive solution of equation (3.110). If ¢ < 1,

it is clear that (3.110) has no strictly negative solutions. Therefore, (3.114)) is established. (3.115|) is a direct
consequence of the identity
p({0}) = lim —z2t(2).

z—0,z€CTUR*
|

In order to address the case where ¢ > 1 and to precise the behaviour of Im(¢(z)) when z — 0,2 € CT UR*
if ¢ < 1, we have to evaluate z(¢(z))? when z — 0. The following Lemma holds.

Lemma 3.13. — If c=1, it holds that lim, g ,cc+ur= |2(8(2))?| = +oo.
— Ife< 1,
1
li t(2))* = — : 3.116
z—>0,zleI(¥C1+uR* 2(t=)) c¢(l—c) ( )
— Ifc > 1, the assumption lim, g ,ec+up- 24(2) = 6 = 0 implies that lim,_q ,ccrur- 2(£(2))? = —ﬁ,

a contradiction because the above limit is necessarily negative. Hence, & is non zero and coincides with
the strictly negative solution of Eq. (3.11(}), and u({0}) = —46.

Proof. (3.64) implies that

9 1 1 c =
z(t(2))" = —MTrR (t(z) + 1 z(ct(z))2R> . (3.117)
We assume in the course of this proof that 6 = 0 (if ¢ < 1, this property holds). We first establish the
first item of Lemma We assume that ¢ = 1 and that there exists a sequence (z,),ec+ur+ such that
Zn — 0 and z,t(2,)? — . As [t(2,)] = +o0, leads to & = a— 1, a contradiction. Therefore, if ¢ =1,
lim, o _,c+ur- |2t(2)?] = +00 as expected.

We now establish the 2 last items. For this, we establish that if ¢ # 1, then, |zt(z)?| is bounded when
z € Ct UR* and z is close from 0. For this, we assume the existence of a sequence (z;,),>1 of elements of
C* UR* such that z, — 0 and |2,t(z,)?| — +oc. Then, it holds that

1 cznt(zn)? !
1=——TrR|( zpt(zn) [+ —————R :
Mo <Z ()1 + 1 — zp(ct(zn))? >

45



2
As |znt(2n)?| = +o0, % — —1. Condition zpt(z,) — 0 thus implies that ¢ = 1, a contradiction.

Using again (3.117)), we obtain immediately that if z,(t(z,))? — a, then a = —ﬁ. As |zt(2)?| remains

bounded when z € CT UR* is close from 0, this implies that lim, g ,cc+r- 2(£(2))? = _c(ll—c) as expected.

Taking z € R™* leads to the conclusion that the above limit is negative. When ¢ > 1, this is a contradiction
because —ﬁ is positive. Therefore, if ¢ > 1, §, the limit of zt(z), cannot be equal to 0. Hence, ¢ coincides

with the strictly negative solution of (3.110) and p({0}) = —d > 0. This completes the proof of the Lemma. Bl

Putting all the pieces together, we obtain the following characterization of uy.

Theorem 3.2. The density fn(x) of un w.r.t. the Lebesque measure is a continuous function on RY*, and
is given by fn(z) = %Im(tN(x)) for each x > 0. If ey <1, pn is absolutely continuous, and if cy > 1, then

dun(z) = fy(xz)dx + pn({0})do. 0 belongs to Sy, and the interior Sy, of Sy is given by
Sy = {x € RT,Im(¢(z)) > 0}. (3.118)

If moreover ¢y < 1, it holds that

1 1
oy~ L 3.119
u(z) = — co o) (3.119)
when x — 07, while if cy = 1,
1V3 /1.1

Proof. t(z) is not analytic in a neighbourhood of 0, hence, 0 € S. As lim,_,, ,cc+ t(2) = t(z) exists
for x # 0, Theorem 2.1 of |43] implies that if A C R is a Borel set of zero Lebesgue measure, then
u(A) = [, f(z)dx = 0. The continuity of f on R** is a also a consequence of [43].

We now prove (3.119)). For this, we remark that (3.116|) implies that

1
. 2 _
xJ%%l>0$(t($)) (1 —¢)

(3.121)

As Tm(t(z)) > 0 for each  # 0, (3.121)) implies that #(z) ~ ——i—— when 2 — 0T, or equivalently that
1

NV
1m(t(z)) ~

ze(l—c)’

It remains to establish (3.120)). For this, we first prove that

1 -1
. 2 3_ (L —1
:c—%fl;wx (t(z))® = <MTrRN> . (3.122)
For this, we write (3.100]) as
1 1 -
—TvR | —at(e)] + ————R| =1 (3.123)
M L= S

Asc=1, xt(z) — 0 and |z(t(z))?| — +oco when & — 0,z > 0. The left hand side of (3.123)) can be expanded
as

+ T R at(x) + at(x)e (@) + fff(t(lw))?

Vi 62(.%),
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where €1 (z) and e3(z) converge towards 0 when  — 0,2 > 0. Therefore, (3.123) implies that

1 _ 1 . 1
MTrR Vat(z) — @) = xt(x)ér(x) + W@(m),

where €;(x) and éz(x) converge towards 0 when x — 0,z > 0. This leads immediately to (3.122)). As function
x — x2(t(x))? is continuous on RT*, it holds that

—-1/3
lim 2%3t(z) = e¥F7/3 iT1r R7! /
M 9y

xz—0,2>0

where k is equal to 0,1 or 2. If k£ = 0, the real part of ¢(x) must be positive if z is close enough from 0.
Lemma thus leads to a contradiction. If £ = 2, Im(¢(z)) < 0 for = small enough, a contradiction as well.
Hence, k is equal to 1. Therefore,

x—0,2>0

~1/3
lim 2%3Im(t(x)) = sin27/3 <A14TrR_1> . (3.124)

This completes the proof of (3.120]). H

We now show that function x — t(x) and x — f(x) possess a power series expansion in a neighbourhood of
each point of §%,. More precisely :

Proposition 3.6. If 2o > 0 and Im(t(zg)) > 0, then, t and f can be expanded as

+oo +oo
t(z) =Y ap( —xz0)", f(x) =D bp(z — x0)*
k=0 k=0

when |z — x| is small enough.

Proof. As in |43| and [14], the proof is based on the holomorphic implicit function theorem (see [9]). We
denote t(xg) by to. Then, Eq. (3.100)) at point zy can be written as h(zg,ty) = 0 where function h(z,t) is

defined by
h(z,t) =1 — iTlr R(—z(I+ _a R) -
M 1 — z(ct)? ’

As zg > 0 and Im(¢p) > 0, function (z,t) — h(z,t) is holomorphic in a neighbourhood of (zo, tp). It is easy
to check that

Ooh
(%) =1 uoleo.0) - shun(oos o), (3.125)
zo,to

where we recall that functions uy and vy are given by (3.95)) and (3.96). Following the proof of Lemma [3.9]
we obtain immediately that 1 —ug(z0, x0) — 23vo(z0, 79) = 0 implies that T'(z¢) = aT'(w0)*, and that ty = at},
for some a € C. The arguments of the above proof then lead to the conclusion that ¢y = ¢, a contradiction

because Im(¢(zp)) > 0. Hence, (%)ro 1, 7 0- The holomorphic implicit function theorem thus implies that

0
0

it exists a function z — £(z), holomorphic in a neighourhood N of xg, verifying #(z¢) = to and h(z,t(z)) =
for each z € N. Moreover, condition Im(tg) = Im(#(xg)) > 0 implies that Im(#(z)) > 0 and Im(zt(z)) >
if |z — xo| < € for € small enough. Therefore, if 2 € C* and |z — zo| < ¢, it must hold that #(z) = t(2)
(see Proposition . Hence, ¢(z) = lim,_,, ,cc+ ¢(2) must coincide with ¢(z) when |z — zo| < e. As #(2) is
holomorphic in a neighbourhood of z, function x — t(x) can be expanded as

+oo
t(z) = Z ap(x — o)k
k=0

when |x — z9| < e. This immediately implies that f possesses a power series expansion in the interval
(xo —€,xz0+¢). A
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We finally use the above results in order the study measure vy associated to the Stieltjes transform

1
tny(2) = MTrTN(z).

As vy and ppy are absolutely continuous one with respect each other, dvy(x) can also be written as dvy(z) =
gn(x)dx 4+ vn({0})dp. Using the identity

%Tr [—z (I n 1_:5((;22))21%) T(z)] —1.

we obtain immediately that
1 t(z))?
t(2) = —— — &
21— 2z(ct(2))?
If 2 >0, t,(xr) = lim,_,, ,ec+ L, (2) exists, and is given by the righthandside of (3.126)) when z = x. Hence,
for z > 0, g(z) = LIm(t,(2)), i.e.

(3.126)

1 e
0= 1 et PP

If ¢ > 1, [2t(2)?| = +o0 if z — 0. (3.126)) thus implies that vy ({0}) = lim,_,g —zt,(2) coincides with 1 — 1,
which, of course, is not surprising. We now evaluate the behaviour of g when z — 0,2 > 0 and ¢ < 1.

(3.127)

Proposition 3.7. If c < 1, it holds that

1 1 1 1
hy — (3.128)

g(x) =z—0 ; \/ﬁ MTI‘(R_ =

while if ¢ = 1, it holds that
L V3 <1

g(x)gﬁog 5 MTr(R_l)> S (3.129)

Proof. Using Eq. (3.117)), we obtain after some algebra that

1 1 1
~o —TrR'
c1—c M 2A-cptk)

~ I S
As t(z) ~p0.2>0 NN el we get that

Im((t(z))2) ~ —i%TrR‘l 1 ! G _16))3/2 \}5

Therefore, (3.127) immediately leads to (3.128]). (3.129) is an immediate consequence of (3.124]). B

Proposition [3.7] means in practice that if ¢y < 1, a number of eigenvalues of matrix Wy, NW; W, NW;’ N
are close from 0. Moreover, the rate of convergence of gn towards +oo is higher if ¢ = 1, showing that in
this case, the proportion of eigenvalues close to 0 is even larger than if ¢y < 1.

We finally mention that t,(x) and g(x) possess a power expansion around eachpoint zg € S°. This is an
obvious consequence of Proposition and of the above expressions of ¢, (x) and of g(x) in terms of ¢(z).
3.6.2 Characterization of Sy.

We denote by wy(z) the function defined by

(L =z(entn(2))?) 1
wn(z) = NN () = zentn(z) Nt (D)

(3.130)

It is clear that w is analytic on C — &, that Im(w(z)) > 0 if z € C*, that w(z) = lim,_,, ,cc+ w(z) exists
for each x € R*, and that the limit still exists if = 0. If we denote this limit by w(0), then, it holds that
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w(0) = 0 if ¢ < 1 and that w(0) = ¢ if ¢ > 1, where we recall that § is defined as the solution of (3.109).
Moreover, w(x) is real if and only if ¢(x) is real. Therefore, the interior S° of S is also given by

S° = {z € R",Im(w(x)) > 0}. (3.131)

Moreover, as t(z)" and (xt(x))" are strictly positive if x € R — S, the derivative w'(z) of w(z) w.r.t. z is also
strictly positive on R — 8. Using the equation ¢(z) = 3;TrRT(z), we obtain immediately that ¢(z) can be
expressed in terms of w(z) as

1 1 .
= - —T - I) . 132
t(z) . w(z) Y rR (R — w(z)I) (3.132)
(3.130) implies that
1+ ct(2)w(z) — z(ct(2))? = 0. (3.133)
Plugging (3.132)) into (3.133)), we obtain immediately that wy(z) verifies the equation
on(wn(2)) = z, (3.134)
where ¢y (w) is defined by
2 1 —1 1 -1
on(w) = enyw MTrRN (Ry —wl) CN MTI"RN (Ry —wIl)” —1]. (3.135)

Observe that holds not only on C — S, but also for each z € S. Therefore, it holds that ¢(w(z)) = =
for each z € R. For each z € R — &, it thus holds that ¢ (w(z))w (z) = 1. Therefore, as w'(z) > 0 if
€ R—S8, w(z) satisfies ¢ (w(zx)) > 0 for each # € R —S. This implies that if 2 € R — S, then w(z) is a real
solution of the polynomial equation ¢(w) = x for which ¢ (w) > 0. Moreover, Proposition implies that
if # € RT — 8, then, t(z) = Re(t(x)) is strictly negative. Eq. for z = x thus leads to the conclusion
that if z > 0 does not belong to S, then w(x) also verifies w(z);TrR (R — w(z)I)™t < 0. If < 0, then,
t(x) is this time strictly positive and w(z) still verifies w(z) £ TrR (R — w(z)I)™! < 0. This discussion leads
to the following Proposition.

Proposition 3.8. Ifx € R — S, then w(x) verifies the following properties :
/ 1
p(w(x)) =z, ¢ (w(z)) >0, w(z) MTrR (R—w(z)I)™" <o0. (3.136)

As shown below, if z € R — S, the properties characterize w(x) among the set of all solutions of the
equation ¢(w) = z and allow to identify the support as the subset of RT for which the equation ¢(w) = x
has no real solution satisfying the conditions . These results follow directly from an elementary study
of function w — ¢(w).

We first consider the case ¢ < 1, and identify the values of z > 0 for which the equation ¢(w(z)) = z has a real
solution verifying , and those for which such a solution does not exist. It is easily seen that if x > 0, all
the real solutions of the equation ¢(w) = x are strictly positive. Therefore, the third condition in is
equivalent to £ TrR (R — w(z)I) ™" < 0. We denote wy xy < wan < ... < wyr, v the (necessarily real) M roots
of ﬁTrRN(RN —wl)™ = % and by iy < pony < ... < H37_1.N the roots of ﬁTrRN(RN —wlh)™ =0.
As ¢ <1, it is easily seen that wy > 0, and that w1 < A\jp < 1 <wa < Ap_ < ... < g <wgp < A1 It
is clear that 3;TrR(R —wl)™! < 0if and only if w € (Agz, 1) U... U (A2, pi7_1) U (A1, +00).

For x > 0, the equation ¢(w) = z is easily seen to be a polynomial equation of degree 2M + 1. Therefore,
¢(w) = z has 2M + 1 solutions. For each x > 0, this equation has at least 2M — 1 real solutions that cannot
coincide with w(x) if x € (§°)¢ :

— M solutions belong to Jwi, A7, .., Jwys M[. None of these solutions may correspond to w(z) if
x € (8°)¢ because ﬁTrR(R —wl)™! > 0 at these points.
— On each interval |Agz, pals - -, A2, pgp_q[, the equation ¢(w) = = has a real solution at which ¢’ is

negative. Therefore, ¢(w) = z has M — 1 extra real solutions that are not equal to w(z) if x € (§°)°.
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As ¢y (w) — o0 if w — XLN,w > Xl,N and that ¢n(w) — +oo if w — +oo, it exists at least one point
in }XL N, +oo[ at which ¢;\, vanishes. This point is moreover unique because otherwise, ¢n(w) = x would
have more than 2M + 1 solutions for certain values of . We denote by w y this point, and remark that
if 2 > 24§ = ¢n(win), ¢n(w) = x has 2M + 1 real solutions : the 2M — 1 solutions that were intro-
duced below, and 2 extra solutions that belong to |A\1,w, [ and Jw,, 400 respectively. Therefore, w(z) is
real, and it is easily seen that w(x) coincides with the solution that belongs to w4, 4+o00[. This implies that
Jzy,+o0[CR=S.

If ¢'(w) does not vanish on JXgz, p1[U. .. UlXe, pzr_, [, for each = €]0, 24 [, ¢ is decreasing on these intervals.
Therefore, none of the real solutions of ¢(w) = x match with the properties of w(z) when z € Rt — 8.
Therefore, w(x) must be a complex number : ¢(w) = z has thus 2M — 1 real solutions, and a pair of complex
conjugate roots : w(x) is the positive imaginary part solution. In this case, x € S°, and the support S
coincides with [0, z].

We illustrate such a behaviour when M = 3. In the context of Fig. the support is reduced to the single
interval [0,z 1] because ¢ (w) # 0 for w € [z, u1] U [Aa, o).

FIGURE 3.1 — Typical representation of ¢ (w) as a function of w for M = 3. There is no local maximum on
[As, 1] and on [Ag, po)], so that S = [0, z4].

In order to precise the support when ¢ vanishes in ]XM, pi[U. .. UAg, t37_1[, we need to characterize the
corresponding zeros. For this, we first justify that ¢ cannot have a multiplicity 2 zero. Assume for example
that ¢’ has a multiplicity 2 zero in 1237 41 tu[; and denote by wy this zero. Then, if z; = ¢(w;), the equation
¢(w) = x; has 2M — 1 simple real roots, and the multiplicity 3 root w;. Therefore, the equation ¢(w) = x;
has 2M + 2 roots (counting multiplicities), a contradiction. We now establish the following useful result.

Proposition 3.9. The number of local extrema of ¢n in |Agr, pa[U. .. UlAe, ig7_ [ is an even number, say

2q, with0 < ¢ < M —1. If ¢ > 1, we denote the arguments of these extrema by w;rN <wy y < w;N <... <

oy <aon <Tyn < <Tg N < Ty (3.137)

Moreover, for each 1, the interval ]Xﬁf(lfl)’ | contains at most one interval [w;N, w;+17N], and x;N (resp.

T,y n) is a local minimum (resp. local mazimum) of ¢ .

50



Proof. We establish that if w1, wy € {w]", w5, ..., wjlil, wy } such that wy > ws, the images z1 = ¢(w1)
and xo = ¢(we) are also satisfy x1 > xo. The goal is to show that ratio (ml —x9) /(w1 —wy) is always positive.
For more convenience we put f, = ¥ TrRy(Ry — wply) ™t = e i\/[ /\’V_ml for n = 1,2. With this and
(3.135) we can rewrite

1

Ty = ¢(wy) = w?zfn(fn -1)= wr%pn(pn — 1), (3.138)

where p, = 1 — f,,. Let us notice that extremes wy and wo are by definition such that f; and fo are negative.
Using directly (3.138)) for x1 and xo we can write

z1 — 22 _ (wip] —wip3) — (wip — wips)

w1 — wa w1 — w2

2 2
Wipr — W2p2  Wip1 — Wyp2
w1 — w2 wy —wy

With the definition of f1 2 the first term of (3.139)) can be expanded as

= (wip1 + wap2) (3.139)

M J—
wi1p1 — wW2P2 14 LZ AT ( w2 o w1 >
w1 — W2 Ml:l w1 — )\i—wz )\i—wl

M —
_,_C Z >\ ™m;
M 4 (N —wy) (N —wa)
And similarly the second one as

2 2 Moy 2 2
wipr — wip2 c Aim; w5 wi
———=— = (w1 +wa) + E = — =

w1 — W M 1 w1 — W ;

i2 J—

M
= (w; +w2) | 1— i 21: (Xi - wl)(xi ") + w1w2M 21: (Xi - wl)(xi - w2).

Putting the last two equation in (3.139]) we obtain

M -2
1 — T2 C )\ml
T2 gy 4 waps —wi —wy) [1— S5 A
w) — w2 (wip1 2p2 ! 2) lez Ai — wi) (A — w2)
c d N
— wiwy—— = — = —(wi f1 +waf2)
lej (Ai = w1)(Ai — w2)
M 2 M
c X my; c Aim;
X 1—-— — L — — WLwWe— .
M; (A —w1) (N — wa) ; Ai — wi) (N — wa)

Now we recall that —f, is positive as well as wy, we > 0 from what we have —(w; f1 + wafz) > 0. That
allows us to use the inequality

1 _ 1( 1 . 1 >
(N —wi) (N —w2) — 2\ (A —w1)? (A — wg)?

and to write

r] —x ¢ L Ny c A Ny
1— T2 i T ;i
wy —wz (wify w2 fo) 2 ;(Ai—wl)Q 2 Z:(Ai—wz)Q
M
c i
— W12 —— E —
M T (A —wi) (A —w2)
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It is easy to check that < Z b ml = f(w) + wf'(w). Using this we can rewrite last inequality as

TR Swifiwsh) (2= i wif{ ~ - ws )

wy — w2

C M Xm
_ — _ v . (3.140
w3 G S (4140)

Taking the derivatives of the expression (3.138)), we obtain that ¢/ (wy,) = 2wy, f2—2wy, fr+2w2 fo f1 —w2 1. By

definition, w; o are extremes of function ¢(w), i.e. ¢'(w; 2) = 0. This gives immediately f, +w,f, —1= u;’}ﬁ

After putting this into (3.140) and regrouping terms we obtain

M J—
T — T 1(w1f1 +wsfo) < w1 fi n w2f2> ¢ Ay
h f2

w1 — Wy 4

M _
= i(w%f{ +w§fé) + iwle <f1 ;2 —|—f, fl) _w1w2iz (i )\ZWZ
1

Finally, we denote by Iy, Is, I3 the three terms of the r.h.s and show that I; + %Ig and Iy + %Ig can be
presented as the sum of positive terms. Using again the definition of fi2 we expand I; + %I 3 as

Ximi
(N —wi)(Ai — wg)

M
1 c
1 wi fi + w3 fy — 2w1w2M El:
c Z ( 2 w% 7 2wiwsg )
4M )\ — ’wl) (Xz — ’LUQ)2 (Xz — wl)(X,- — U)Q)

Similarly, I 4 %Ig can be written as

T G V0 | N 1) S 2
= wiwr gz ) N <()\—w1) +(XZ-—wg)2 ()\i—wl)()\-—wg))

_w1w27z)\ (\/f?/fl \/fl/f2>2

)\—wl )\Z'—?.UQ

This shows that 1 — 22 > 0, and that ( m ) holds. It remalns to justify that each interval
(])\M_( 1) M D=1 -1 contains at most one interval [w Wy Wy, ~]- Assume that the interval ])\ -1y i

. . . + —
contains 2 1ntervals[ w, N, W, 4 ) and [wh Wy, N> Wpy1,v] With p1 < pa. Then, it also holds that [w Wy 1 N Wy 1o n] C

+

RSy (1-1) ,fo N is necessarily a local minimum because z, < x, 4 y While 2, ., \ must be a lo-

p1+1, 141,
cal maximum. The same property holds for w+ 1N and x_ 42N However, this Contradlcts the property

z, 1N < me,N. This completes the proof of Proposition |

Proposition [3.9] allows to identify the support Sy.

Corollary 3.5. When ¢y < 1, the support Sy is given by

Sy = [O,miN]U[xiN,m;N]U...[x;N,x+7N]. (3.141)
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Proof. If z belongs to the interior of the righthandside of (3.141)), ¢(w) = = has only 2M — 1 real solutions.
This implies that the 2 remaining roots are complex valued, i.e. that x € S§°. This leads to the conclusion
that
]O,xIN[U]wiN,x;N[U .. .]x;N,xJ'_’N[C S°
and that
[O,xiN} U [miN,x;N} U...[z y24n] CS.

Conversely, if z € RT — ([O,fo] Ulzy ys gy U [:c;N,x+7N]), the equation ¢(w) = x has 2M + 1 real
solutions, which implies that w(x) is real. Therefore,

RY — ([o, wF ] ULy e U [z s x+7N]> CRY—S

or equivalently,
ScC [O,xiN] U [m;N,xIN] U...[2, N T4 ,nN]-

This completes the proof of Corollary (3.5)). B

We illustrate the above behaviour when M = 3. In the context of Fig. , ¢ vanishes on [A3, 111] and not
on [Ag, us]. The support thus coincides with S = [0, 2] U [z5, z4].

FIGURE 3.2 — Typical representation of ¢ (w) as a function of w for M = 3. There are 2 local extrema on
[A3, 1] and no local maximum on [Ag, po], so that S = [0, 2] U [z5, z4].

When matrix Ry is reduced to Ry = o2I, i.e. M = 1 and \; = o2, the support of course coincides with
Sy =1[0,24+ n], and z4 y is given by

2
1 14++/14+8c
"17+7N = O'4CN (1 =+ wm) (CN -+ 2]V> . (3142)
e

Moreover, w4 n is equal to

1+ VI
wiy = 0> <1 + +2+8CN> . (3.143)

(3.142) and (3.143]) are in accordance with the results of [28].
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We now briefly address the case ¢y > 1. The behaviour of ¢ is essentially the same as if cy < 1, except that
the first root wy n of the equation ﬁTrRN(RN —wl)™l = % is now strictly negative. As ¢x(0) = 0, this
implies that it exists w_ y € (wy,n,0) for which ¢ (w_ ) = 0. Moreover, this point is unique, otherwise, the
equation ¢y (w) = z would have more than 2M + 1 roots for certain values of z > 0. x_ y = ¢n(w_ n) >0
is thus a local maximum of ¢y whose argument is strictly negative. We also notice that ¢x(w) > 0 if
0<w< XM- Apart these differences, the behaviour of ¢y for w > Xﬁ remains the same as if cy < 1. In
particular, Propositionstill holds true. However, we remark that if 0 < z < z_ x, the equation ¢ (w) =
has still 2M — 1 real solutions that are strictly positive, and 2 extra real roots, the smallest one being less
than w_ n and the other one being negative and largest that w_ y. This implies that wy(x) is real. We
also notice that wy(x) coincides with the smallest extra negative root because it satisfies conditions .
Hence, the interval ]0, z_ y/[ is included into R — Sy If ¢, does not vanish on [Ag7, u1[U. .. UlAe, pgz_, [, for
z €]z_ N, 24 N[, the equation ¢ (w) = x has only 2M —1 real solutions that do not satisfy conditions
and 2 extra complex conjugates solutions. Therefore, |x_ n, 2z y[C S} and [z_ v,z n] C Sn. Conversely,
10,2_ n[U]z4 N, +oo[C RT — Sy, which implies that Sy C {0} U [z_ n, 24 n]. As it was established above
that {0} C Sy, we deduce that Sy = {0} U [z_ n, x4 n] if ¢ does not vanish on 37 11U U, w4 [
If <Z>/N vanishes on ]XM, iU .. UJAg, paz_q L, i-e. if ¢ > 1 (we recall that g is defined in Proposition , the
support is given by

Sy ={0}U [x_7N,xIN] U [z v x;N] U... [z, n z4.n]. (3.144)

To justify this, we just need to establish that z_ y < :1:;r ~» and to use the same arguments as in the proof of
Corollary To justify z_ y < fo, we put w; = w_ N, w2 = wf’N, and follow step by step the arguments
used to evaluate ¢(ws2) — ¢(w1) > 0. We notice that in contrast with the context of the proof of Corollary
ﬁ, wy < 0 and f; > 0. However, fiw; is still negative, so that —(wy f1 + waf2) is still positive. This allows
to conclude that all the inequalities used in the course of the proof of Corollary remain valid, except the
evaluation of the term Iy + I3/2 that needs the following simple modification : we express Is + I3/2 as

c —fo/ —fi/ /> 2
B YyYi Z)\imi 8 <()\i —wy)? - (Ai — w2)? - (Ai —w1)(Xi — w2)> '

As —fo/ f1 and — f1/ fo are positive, it holds that

I _ . R NVR i
o+ 1I3/2 = w1w24MZ)\lml pV— + pV— .

Therefore, Is 4+ I3/2 > 0, and ¢(w2) — ¢(w1) > 0 holds.

In order to unify the cases cy <1 and ¢y > 1, we define x_ y for ¢y <1 by z_ x = 0, and summarize the
above discussion by the following result.
Theorem 3.3. The support Sy is given by

Sy ={0}, 1 U [95*7N’331+,N] U [xiN,sz] U...[z, N T4.N]- (3.145)

We now establish that sequences (w4 n)n>1 and (z4 n)n>1 are bounded. In other words, for each N, the
support Sy is included into a compact interval that does not depend on V.

Lemma 3.14.
sup wy Ny < 400, sup 4 N < +00. (3.146)
N>1 N>1

Proof. In order to prove this lemma, we use that w; xy > A; y and that qblN(er,N) = 0. It is easy to check
that

’

1 _ 1 _
oy(w) = ZC%VwMTrR(wI ~R)' - (ch)QMTrR(wI —R)™?

1 2 1 1
9.2 _ 1\ _ 2 _ 2 _ 1
2cyw <MTrR(wI R) > 2(enyw) MTrR(wI R) MTrR(wI R)™.
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For w > b > A, it is clear that |[(wl — R)7'|| < —L;. Writing that w;TrR(wl — R)~! = LTrR +
S TrR*(wl — R)~! and w2]\1/[TrR(wI R)72 = LTrR+ w (L TrR(wI — R)72%) — & TrR*(wl — R)™!

obtain immediately that ¢ (w) can be written as

’ 1
on(w) = C%V MTrR + on(w),

where dn(w) verifies [dy(w)| < §(w) and w — 0(w) is a rational function of w that does not depend on
N and which converges towards 0 when w — 4o00. Therefore, for each > 0, it exists w; > b such that
o (w) > % MTrR n for each w > wy. As cy — ¢, and that §;TrR > a, we obtain that o (w) > % a for
w > wy. As ¢N(w+7N) = 0, we deduce from this that wy y < wy. As wy does not depend on NNV, this establishes
that sup s> w4 N < +00. To prove that x4 y is bounded, we observe that x4 v = ¢n(wy n) < ¢n(w1). As
wy > b, it is easily seen that

b b
onton) < bt (2 + )

Therefore, sequences (¢n(w1))n>1 and (x4 y)n>1 are bounded. This completes the proof of Lemma|3.14] B

We finally provide a sufficient condition under which the support is reduced to Sy = [0, 24 n] if ¢x < 1 and
to Sy = {0} U [z— v, 24 n] if ey > 1. More precisely, the following result holds.

Proposition 3.10. Assume that there exists & > 0 such that for each M large enough, the following condition
holds :

k—1 1/2
ArN — NN <k (‘M|> (3.147)

for each pair (k,1), 1 < k <1 < M. Then, for each M large enough, Sy = [0,z4 n] if cy < 1 and to
Sy = {0} U [x_,N,xJﬁN] if ey > 1.
Proof. We assume that (3.147) holds, and that S does not coincide with [0,z4] or § = {0} U [x_, z4] , i.e.
qﬁl(w) vanishes at a point wg such that A\; < wg < Aps and ﬁTrR(R —wol)~! < 0. After some algebra, we
obtain that wq satisfies :
_ —LTrR(R — wol)~?

1—2c3:TrR(R — wol)~!

%Tr (R(R —wol) ™)

As 3 TrR(R — wol)~! <0, this implies that

1 21
—T 1)~ — ——T —wol)™!
i r (R(R — wo Z()\k—w0> <=1 rR(R — wol)
M
R -
M 1 ‘)\k - w()]
Jensen’s inequality leads to (ﬁ 22/1:1 |>\k)\—7kwo\) Zk 1 ()\k g ) . Therefore, we obtain that ﬁ 224:1 I>\k)\—7kwo| <
1, and that

Z(Ak_wof <1. (3.148)

We assume that \j, < wg < Aj,+1. Then, hypothesis (2.2)) and condition (3.147)) imply that

Hence, it must hold that

for each M large enough, a contradiction because 22/1:1 m is easily seen to be an unbounded term. B
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3.7 No eigenvalues outside the support.

In this paragraph, we establish the following result :

Theorem 3.4. Assume that there exists € > 0, k1 € R, kg € RU {+00}, ke > k1 and an integer Ny such
that

(k1 — €, ka+e)NSy =0 VN > Ny. (3.149)
Then with probability one, no eigenvalues of Wf’NW;NWp’NW}*N appears in [k1, k2] for all N large enough.

We first remark that it is sufficient to consider the case where ko < +o00. To justify this claim, we recall
that Un>1Sn is a compact subset (see Lemma , and notice that [[WynWy Wy vW} | < Wt
where matrix Wy is defined by (3.4). Moreover, (3.5) implies that almost surely, for N large enough,
[Wi||* < b(1+6+/cx)? where § > 0. Therefore, almost surely, the largest eigenvalue of Wy, NWy W NV
is, for each N large enough, upperbounded by the nice constant % (1 + § + \/a)‘l. This justifies that it is

sufficient to assume that ko < +00 in the following.

In order to establish Theorem we use the Haagerup-Thornbjornsen approach ( [17], see also |7]). The
crucial step of the proof is the following Proposition.

Proposition 3.11. Vz € C*, we have for N large enough,

E {]WlLTrQN(Z)} = %TI“TN(Z) + %7‘]\;(2), (3.150)

where ry is holomorphic in CT and satisfies

rn(2)] < Pr(|2]) P (1) (3.151)

Imz

for each z € CT, where Py and Py are nice polynomials.

Proof. To prove (3.150) we write

E {]WlLTrQN(Z)} - %TrTN(z) = ﬁTr [E{QnN(2)} — IL @ Sn(2)]

1
+ MTY [Sn(z) — Tn(2)].

As (3.63) holds, it is sufficient to establish that

1 1 .

—Tr[Sn(2) — Tn(2)]| £ 5 P1(]2]) Pe(Im ™" 2) (3.152)

M N
for some nice polynomial P; and P;. In the following, we denote by sy(z) the function defined by

1
sn(z) = =TrRnSN(2). (3.153)

M

It is clear that sy € S(R1). Moreover, if uy s represents the associated positive measure, then we have

1 1 1
pns(RT) = —TrRy, /R+ Ny s(N\) = ey —TrRy —TrR% (3.154)

M M M

(3.154)) can be proved using the arguments of the proof of Proposition .
As ﬁTr[SN(z) — Tn(z)] is given by 1) for F' =1, (3.152)) appears equivalent to the property

%Tr[RN(SN(z) - TN(Z))]‘ — Jsn(2) — tn(2)| < %Pl(]z])Pg(Im_lz). (3.155)
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In order to prove (3.155)), we define the following functions that appear formally similar to functions wu(z)

and v(z) defined by (3.76) and (3.77) :

ta(z) = c]cza( )|2iTr(RS(z S*(z)R)

¢ 11— z(ca(2))?? ’
(o) = ATESES )

¢ 11— 2(ca(2))?)> 7
|ez2t(2)a(2) 17 Te (RS (2)T(2) R)

wal2) = T a2 — 2(et(2)?) (3.156)
b () — o WTHRS()T(2)R)
bl = T a1~ 2(t(2)) (3.157)

Using equation ¢(z) = 1; TrRT(z) and the definition of s(z) and S(z), we obtain easily that

holds, where

1(2) = (A(2) — 5(2)) (0 () + 1a(2),
2(2) = 2(a(2) ~ 3()(E01(2) + (=),
Dea(e) = (eeEl ).

’ 2°va(2)  uga(2)

This can also be written as

- Duate) (1)

—1(2)) ) _ (a(?)

i) -0 (3:155)
The application of (3.62) to F' = I, ® R leads to a(z) — s(z) = OZ(N_ ). In order to verify that (€;(2))i=12
are O,(N~2) as Well we have to control us o and v . As t(2), a(z), || T(2)|| and [|S(2)|| are O,(1) terms, it
is sufficient to evaluate the denominator of the right handside of m As the mass and the first moment
of p and 7 (the measure associated to a(z)) both verify the conditions of Lemma this Lemma implies
that (1 — z(ct(2))?)~! = O,(1) and (1 — 2(ca(2))?)~! = O,(1). Therefore, we have checked that (€;(2))i12
are O,(N~2) terms.

In order to evaluate s(z) — ¢(z), it is of course necessary to show that matrix I — Dy 4(z) is invertible on C¥,
and to control the action of its inverse on the vector (e1(2),¢€1(z))?. We define matrix D, by

Da(z) = ( ga(a) va(Z))

2%,
and establish the following result.

Lemma 3.15. For each z € CT, it exist nice constants x and 3 such that

Imz)®
det (I —D(z)) > (‘5|2(+|Z)’) (3.159)
Moreover, it exist 2 nice polynomials Py and P for which
1 —uq(z) >0 (3.160)
and (Imz)8
det (I —Dqy(2)) > W (3.161)
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for each z € By, where By is defined as

1 1

Finally, for each z € By, it holds that

% (Imz)®
det (I —Din(2)) 2 55— 3.163
Dl = (e 1 oy (3109
Proof. To evaluate det (I —D(z)), we use the calculations of the proof of Lemma 3.7 In particular, we have
Imt(z) \ L TrRT (2)T*(z)
(I —D(z)) <Imzt(z)) = Imz < 0 . (3.164)
This implies that
Imz 1 Imzt(z) Imz 1
1-— =—— —TrRT(2)T" > - —TrRT(2)T*
u(z) Imt(z) M PRT()T"(2) + Imt(2) v(z) 2 Imt(z) M PRT()T7(2)
By applying Cramer’s rule to (3.164]), we obtain that
det 1-D() = 2 Lppror o —ue) > (2 L nrreyree) (3.165)
C Imt(z) M ~ \Umt(z) M ) '

Imz

mt(z)

It is clear that Imt(2) < [t(2)| < 55 TrR (Imz)~" < b (Imz)~*. Therefore, it holds that I > 3 (Imt(z))%

We now evaluate 2 TrRT(2)T*(z). For this, we remark that
L BRI (2) = L TeRT()T ()RR > L L Te(RT(2)T* (=) R) (3.166)
3 DRT(2)T(2) = - TeRT ()T (2 e 2)T*(2)R). :

Jensen’s inequality implies that --Tr(RT(2)T*(z)R) > ‘ﬁTrRT(z)‘Q = |t(2)|? > (Im#(2))*. Therefore, the
application of Lemma [3.5/to 3(z) = t(z) implies that

Imz 1 . 2 % (Imz)®
(it W™ 2

for some nice constants £ and f. (3.159) thus follows from (3.165]).

We now establish (3.160)) and (3.161]), and denote by €(z) the function €(z) = a(z) — s(z). Using the equation
s(z) = 4y TrRS(2), and calculating Im s(z) and Im zs(z), we obtain immediately that

1 *
(I—-Dy(2)) ma(2) Y _p (7 TRS()57(2)) 4 ((Ime(2) ) (3.167)
Imza(z) 0 Imze(2)
The first component of (3.167)) leads to
Imz 1 Ime Imza Imz 1 Ime
1—wuy, = - —T * o > -—T * . 1
Y Ima M rRSST + Imao + Imao v Imaa M rRSST+ Imao <3 68)

1
Using the same arguments as above, we obtain that MTrRSS* > 3 ls(z)> > ¢ (Ims(z))?. As (3.154) holds,
we can apply Lemma [3.5{ to 3(z) = s(z) and obtain as above that

Imz 1 % (Imz)*

57 TRS(2)5"(2) > BP ¥ 2P

Ims(z)
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I
for some nice constants S and k. We remark that Iﬁ > — Ir‘n‘a Therefore, by Lemma applied to f(z) =

mao
: Ime BE+|2? : 1 1
a(z), it holds that - > —k1le| =~ for some nice constants x1 and B1. As |e(2)| < jzQ1(|2])Q2(55)
mo

for some nice polynomials ()1 and (J2,we obtain that

g > 2 Lypgerp Ime S Iz 1y pegn dd S L _r (Ima)* (3.169)
= Tma M Ima — Ima M Ima — 2 (|82 + |2]?)? )
if z belongs to the set B y defined by
% (Imz)* 1 1 B4+ 1z2 1 Kk (Imz)?
- > — .
(92 + =P~ w2 QG T = 5 (e a2

The set By n is clearly defined in the same way than By, but from 2 other nice polynomials Py ; and Py 1.
Using the Cramer rule, we obtain that det (I — Da) can be written as

Imze
V-
Imao

Imz N Im

Plugging (3.169) in the last equation, we get that the inequality

det (I—D)>(1 /<;(Imz)4 )2—‘ZH6‘U

1B +121*) Ima

holds for each z € By . As v, = O,(1), we obtain that

4 \?2 4 \?2
£ (Imz) |z| |€] - 1k (Imz)
_ v oM\
(1817 + |2[*)? Ima = \ 4 (|82 +2?)
for each z € By v, where By v is defined as By from 2 nice polynomials P; o and Pso. We put Pi(|z]) =

P11(|z])+ Pi2(]z]) and P>(1/Imz) = P 1(1/Imz) + P> 2(1/Imz), and consider the set By defined by (3.162)).
It is clear that By C By n N Bz v, and that (3.160) and (3.161)) hold if z € By

It remains to establish (3.163)). For this, we remark that the inequalities

|det (T—Dya(2)] > 1= ura(2)]® = 2 |vra(2)]* > (1= Jura(2)])?
—|2lva(2) - |2lv(2) > (1 = Vu(2)ua(2))? = |2|va(2) - |2[v(2) > (1 = u(2))(1 = ua(2))
— [2[va(2) - [2[v(2) = V(1 = u(2))? = [2Po(2)) (1 — ua(2))? — |2[?va ( )
= y/det (I —D(z))det (I —Dgy(z))

hold for each z € By. Therefore, (3.163)) follows from (3.159) and (3.161)). This completes the proof of Lemma
3.15 W

Solving (3.158)), we obtain immediately that it exists 2 nice polynomials @1 and @2 such that,

()~ ()| < 3 @0 ()

holds for each z € By. If z € B, we use the argument in |17]. More precisely, if z € B, the inequality
< 7w Pi(|2)) P2(1/Imz) holds. As [sny(2) — tn(2)| < 2 4;TrRy 2 on CT, we deduce that

Imz
Imz

s () = ()] < 20 Pi(12])

for each z € BS. This, in turn, leads to the conclusion that sy(z) — tn(2) = O.() for each z € C*.
This establishes (3.155) and £ Tr(Twn(z) — Sn(z)) = Oz(ﬁ) as expected. This completes the proof of

Proposition |
We now follow [8] and [17] and use the following Lemma.
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Lemma 3.16. Let ¢ be a compactly supported real valued smooth function defined on R, i. e. ¢ € C°(RT,RT).
Then,

B { ey | - [ o -0 (5).

Proof. Due to Proposition we can write
E {mTrgZ)(Wpr Wpr)} = 1y1ﬁ)1 Im { - o(z)E {mTrQ(x + zy)} daz}

as well as

SN (V) = = lim Im{ [ SE {mTrT(x + zy)} daz}

SN T yl0

Using Proposition [3.11] we obtain

B { L1 TV | - [ o)

1
= — —limIm { o(x)rn(z + iy)dac} . (3.170)
R+
Since the function ry(z) = O,(1), we can use the result which was proved in |7, Section 3.3] and obtain

lim sup o(x)rn(x +iy)de| < K

yJ0

for some nice constant k. This and (3.170) complete the proof. B

R+

In order to establish Theorem [3.4] we introduce a function ¢ € C2° such that 0 < ¢(\) < 1 and

1, for A
o) = b or A € [K1, ke,
0, for A € R — (k1 — €,k + €).

Since for N large enough (k1 — €, k2 +¢) NSy = @ then [g ¢(A)dun(A) = 0 and according to Lemma

* * ]'

Now we show that

1 R 1

For this we use again the Poincare-Nash inequality

Wm1 WWLQ }

i1,91 " 12,92

oW

11,J1

Var{Trg(W;W; W, W§)} < ZE{ <8Tr¢(WfW;WpW}“)> E{

3Tr¢(WfW WoW75) AT (WW*) — OTeo(WW™) x
oW } ZE{ ownm E{VVHM 12]2} Towme .

22 .72 117]1 127.72

We only evaluate the first term of the r.h.s. of the inequality, denoted by %, because the second is similar.
For this we write first

OTr (W, W W,W7)
EMS —Tv | &' (W W W, W2
aWil 1j1 ¢ ( fYWp¥p f)
1< it < L, (W,Wi/ (WsWaW,WH W)
L+1< iy < 2L, (¢ (WyW W, Wi W W, )M

oW

11,J1

OW Wy W, Wi )

i1—L,j1-
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Plugging this into (3.6 we obtain

L
1 * * * *m
V= Z Z (NE{ (WPWf (bI(Wpr prf)Wf)iljll Rm1m25i1+j1,i2+j2

i1,82=1 j1,j2,m1,m2

* * * m 1 * * * *m
x (W Wid/ (WWs W, Wi Wy) 2 } + NE{ (¢ (WeWs W, W W Wy W)

X Ronyma i iz (6 (W W Wy WHWWw,) "2 1),
Following the proof of Lemma [3.1} we obtain
* * C * * * * *
Var{Tro(W, Wy Wy W7)} < CE{TIW ! (W W, Wy W)W W, W, W
X o (WiWaWWHWy} + E(TW W W W Wo W (6! (W W W Wi)%) (3.171)
To evaluate the first term 11 of the r.h.s of (3.171) we denote n(A\) = (¢'()\))?\ and write

%E {TrW;;gb/(WfW;WpW;)WfW;WpW;¢I(WfW;WPW;)WJC}
< S E{IWPTe (W, W W, 7))}
We recall that implies that [[W¢||? < b||W;;ql|>. Therefore, it holds that
Y1 < %E{||Wz’z’d||21||W“-d||§(1+\/a)2+5TT(U(WfW;Wpr))}
+ %E{||Wiid”21||W,L-,L-d||>(1+\/§)2+6Tr(77(WfW;WPW]T))}
< %E{TT(U(WfW;WpW}k))} + BEY 2 [Wasal* 1y wisall> (14 o)+

2
« EM/? { (;n(n(wfwgwpw;)g } .

Lemma implies that %E{Tr(n(WfW;WpW}"))} = O(N~2). Throughout the proof of Lemma , we get
that EHWiidH41HWiidH>(1+\/a)2+§ = O(NF) for all k. Since function ¢’ € C°, there exists a nice constant
k such that |¢'(\)| < & for all A and ¢'(A\) = 0 for all A\ > b+ 2e. We deduce from this that it exists a
nice constant « such that [|n(WynWy xWp NW7 y)|| < & for each N. From what about we conclude that
Y1 =O(N7?).

As for the second term (¢2) of the r.h.s of (3.171)), we write

K * * * * 1) 2
Vo = B TIWIW W WL W (¢ (W W W, W7) Wy }
1 * * 2 * *
< kE {||Wp|2NTr (¢ (W W2 W, W) WyW Wpr} .

It is easy to see that v can be evaluated as 1, leading to the conclusion that 1o = O(N~2). Therefore, we
have checked that

1
Var{Trop(W;W;W,W;)} = O <N2> .

Now we can complete the proof of Theorem as in [8]. For this we apply the classical Markov inequality
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and combine what above
1 * * 1 8/3 1 * * 2

1 1 2
Y (Var {mTr¢(WfW5WpW}‘)} + <]E {mTrqb(WfWS W,Wi )}> )

Applying Borel-Cantelli lemma, we obtain that almost surely, the inequality

1 * *
holds for each N large enough. By the very definition of function ¢, the number of eigenvalues of matrix
WiWyWpW7 lying in the interval [K1, k2] is upper bounded by Trgi)(WfW;WpW}‘) < ﬁ Since this num-
ber of eigenvalues is an integer, we conclude that with probability one there is no eigenvalues in the interval
[K1, k2] for each N large enough. B

We finally illustrate the above results by the following numerical experiment. M, N, L are given by M = 500,

N = 1500 and L = 2 so that ¢y = 2/3. The eigenvalues of matrix Ry are defined by Ay ny = 1/2 +

7 cos (”(ij\}l)> for k = 1,...,M. Matrix Ry verifies -Tr(Ry) ~ 1. Fig. represents the histogram

of the eigenvalues of a realization of Wy W7 W), NW;, ~ as well as the graph of the density gn(x). We
notice that the histogram and the graph of gy are in accordance, and that, as expected, no eigenvalue of
Wy, NW;} NWp, NW}': y lies outside the support of gy.

FIGURE 3.3 — Histogram of the eigenvalues and graph of gy (z) for M = 500, N = 1500, L = 2.
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3.8 Recovering the behaviour of the empirical eigenvalue distribution 7y
using free probability tools

The purpose of this paragraph is to show that it is possible to use free probability tools in order to charac-
terize the limiting behaviour of the empirical eigenvalue distribution n of matrix Wy, NW NW 7 NWf N- As
this thesis is not focused on these kind of approach, we present briefly the following results and leave the
details to the reader.

The free probability approach is based on the following observations :
— Up to the zero eigenvalue, the eigenvalues of Wy, NW W NW; y coincide with the eigenvalues of
W}“ NWiNWE N Wp N
— The matrices W NWf N and W* NWp n are almost surely asymptotically free. Therefore, the eigenva-
lue distribution of w# NWf NW NWp ~ converges towards the free multiplicative convolution product
of the limit dlstrlbutlons of Wf NWy N and W, NW ~. These two distributions appear to coincide
both with the limit distribution of the well known random matrix model + ~vXn(r x Ry)X N where
Xy isa ML x N complex Gaussian random matrix with unit variance i.i.d. entries.
In the following, we follow the definitions of asymptotic freeness provided in |22] (see in particular section 4.3)
which need the existence of certain limit distributions. This is in contrast with the approach developed in the
previous sections more focused on the behaviour of deterministic equivalents. We however mention that more
recent free probability works (see e.g. [36] and the references therein, |6]) allow to avoid the introduction
of limit distributions, and would allow to recover the previous results on the deterministic equivalent vy of Dy .

In order to be in accordance with |22, we thus formulate in this section the following assumption :

Assumption A-1: The empirical eigenvalue distribution wy = ﬁ 22/‘;1 Onen Of matriz Ry converges
towards a limit distribution w.

We remark that hypothesis implies that w is compactly supported. Moreover, it can be shown that
measures (un)ny>1 and (vy)n>1 both converge weakly towards limits denoted p and v in this section. We
also notice that Lemma implies that p and v are compactly supported. It is also easily checked that the
Stieltjes transform ¢(z) of p verifies the equation

1 T dw(T)
t(z) = —Z/]R+ rte) (3.172)
1 — zc2t%(2)
while the Stieltjes transform ¢, of v is given by

cyt(z 2
tu(z) = —% - l_z(tit)(z))Q (3.173)

We recall that ¢, represents the limit of ¢y = % In the following, we establish that (]3.172[) and 63.173[)
can be obtained using free probability technics.

Before going further, we first recall the main useful definitions introduced in [22].

Definition 1. Consider a finite family of sequences of N x N possibly random matrices ((Xi N)N>1)i=1,...r-
Then (X N)i=1,., ts said to have an almost sure joint limit if for each non commutative polynomial
P(x1,...,3,) inr indeterminates, then +TrP(X1n, ..., X, n) converges almost surely towards pu(P) where
1 1s a deterministic distribution defined on the set of all non commutative polynomials in r indeterminates
(i.e. p is a linear form such that pu(1l) =1).

We remark that if » = 1 and (X; y)n>1 are Hermitian matrices, the above condition is equivalent to the
existence of a limit empirical eigenvalue distribution.

. . . 1
Definition 2. Consider p families (Xi(,z\)/)izl,..-,na R (Xi(ﬁ\),)i:l
Then, X ... X®) are said to be almost surely asymptotically free if the 2 following conditions hold :

vy Of N X N possibly random matrices.
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— For eachq=1,...,p, (XZ(%)i:17,._,Tq has an almost sure joint limit

— Ym, i1, i, € {1,2,...,p} with iy # ia # -+ # iy, and for each non commutative polynomials
(Pj)j=1,....m i (1i;)j=1,. m indeterminates such that +Tr(Pj(Xy Ny ,X:?, ~)) = 0 a.s. it holds that
45’

1 . . ,
NTr(Pl(XﬂN, . ,quij) o P X Xﬁ:” ~) =0 as.

We remark that when each family X (2 is reduced to a single sequence (X](\?)) ~>1 of N x N Hermitian, or
similar to hermitian matrices the almost sure freeness of XM, ..., X® holds if

Definition 3. — For eachq=1,...,p, (X](\?))Nzl has a limit eigenvalue distribution
— VYm, i1, i € {1,2,...,p} with iy # i # -+ # iy, and for each polynomials (Pj)j=1...m in one
indeterminate such that &Tr(P;(X)) — 0 a.s. it holds that

1 i i i
NTr(Pl(X](Vl))PQ(X](VQ)) Pp(XU) 50 as. (3.174)

We also recall the definition of the S transform of a probability measure, and recall that the S transform of
the free multiplicative convolution product of two probability measures is the product of their S transforms.

Definition 4. Given a compactly supported probability measure p carried by RY, we define 1,(z) as the
formal power series defined by

=> =z / t*dpu(t) tztd (t) (3.175)

k>1

Let x,, be the unique function analytic in a neighbourhood of zero, satisfying

Xu(Vu(2)) = 2 (3.176)

for |z| small enough. Then, we define the S transform of j as the function S,(z) defined in a neighbourhood
of zero by

1+ 2
o

Su(2) = xu(2)

(3.177)

Moreover, if p1 and ps are two compactly supported probability measures carried by RY, the S-transform
Sinmus of p1 X po satisfies

Sﬂlglﬂ = SM1Su2' (3.178)
We are now in position to state the main result of this section.
Proposition 3.12. Matrices W;,NWJ”,N and W NWpN are almost surely asymptotically free.

Proof. We first notice that it possible to replace matrices Wy and W), by finite rank perturbations because
the very definition of almost sure asymptotic freeness is not affected by finite rank perturbations. We thus

exchange W), and Wy by W, = \/»Y and Wf = fo where Y and Yf are defined by
Y2 ... .. ... ... YN Y1
f/p: Y3 eer aen e YN Y1 Y2 7
yo .-+ Yn Y1 Y2 ... YrL-1

1. in the sense that Xj(\?) = U](\?)HJ(\?)(U](\?))_l for some N x N Hermitian matrix Hf\?)
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YL+1 oo v voe ene eee YN Y1 Yyr

YL+2 oo e e. .. YN (51 YL Yr+1
?f — YL43 vvv wvv oo YN N ce. YL Yr+1 Y42
Yo, .-+ YN Y1 --- YL Yr+1 Yr+2 - Y2L-1
In other words, vectors yn+41,---s YN+L—1,---,YN+2L—1 are replaced by vectors y1,...,yr—1,...,Y2r—-1. In

order to simplify the notations, we still denote the above finite rank modifications by Y}, Y, W), W;. We
define the N x N matrix Il and the M x N matrix Y by

0 ... 0 1
1 . 0
II= o . . ,and Y = (y1,92,...,YN)
0 1 0
and rewrite Y}, (and Y7 respectively) as
Y y1I-
YII YHL+1
YVP = . ) Yf =
YH.Lfl YHéLfl

This allows us to obtain the useful expression for WyW,, and W;Wf

Yy

WiW, = S5 I+ < ¥ )Hk (3.179)
Yy

WiWy = kgt < N )H’“ (3.180)

Since N~'Y*Y can be written as N *1Y7};deNY;-id, where Yj;4 has i.i.d. Gaussian entries, the hermitian matrix
N~YY*Y is unitarily invariant. Moreover, Assumption |1 implies that N~'Y*Y has a limit distribution
while it is easily checked that the family {I,I1* I1,..., II*20=1 TI20=1} has the same property. This and
Theorem 4.3.5 in [22] leads to the conclusion that Y*Y/N and {I,11* 1II,... II*2£=1 T122-1} are almost
surely asymptotically free. Proposition thus appears to be an immediate consequence of the following
Lemma adapted from Lemma 6 in |15]. In order to make the connections between Lemma and Lemma
6 in [15], we use nearly the same notations than in [15] in the following statement.

Lemma 3.17. We consider a sequence of N x N Hermitian random matrices (XN )n>1 and N x N de-

terministic matrices UN , W, ..., UN WN such that Xy and {UN, W, ..., UN W} are almost surely
asymptotically free. Then, if UlN, WIN, L UN WA satisfy

UNWN =whNUN =1y (3.181)
for each i = 1,...,m as well as %Tr(UiNWJN) = 0;—j for all i,j = 1...m, then the random matrices
UNXNWN . JUNXNWL are almost surely asymptotically free.

Proof. We prove Lemma [3.17] by following step by step the proof from [15]. For simplicity we omit index N
below. Due to (3.181]) we have W; = Ui_1 so that matrices (U; X W;);=1,....m are similar to the Hermitian matrix
X. We have thus to verify the 2 items of Definition (3] I The first item is obvious. To check condition ,
we consider any k, indexes i1, -+ , i with i # - -+ # iy and polynomials P; such that 1 Tr(P, (U XW;. )) —0
a.s. Using again it is clear that P;(U;; XW;,) = Uy, P;(X) Wy, and as a consequence, Tr( i (X )) -0
a.s. We define ny as

1
NN = NTI“(PI(UMXWH)PQ(UizXWiz) to (UlkXWZk)) =

1
~ Ui PLX)Wi U, Po(X) Wi, - Uiy P(X)W, ) = T HW Ui, Pj(X) |

15—1
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where ig = . If 44 # i then by assumption %Tr(WZJ Ui ) =0 for j = 1,...,m. As we also have

%Tr(Pj(X)) — 0 a.s, the almost sure asymptotic freeness of X and {Uy, Wy, ,Up, Wy, } leads to the

conclusion that ny — 0 a.s. In the case when i1 = 4}, we have W;, U;, = Iy and the same conclusion holds.

O

By taking X = YY* , Uy =1I*"1 and W; = II'"!, Lemma gives us immediately that Y Y H* Y*
L II2l— I(Y* )HQL I are almost surely asymptotically free. Using the expression 3.17 of W*

and Wf Wy, we obtain that W7W,, and W}" W; are almost surely asymptotically free. B

We also deduce that the limit distributions of WI’," W, and W}"Wf both coincide with the additive free

convolution product of L copies of the well known limit distribution of Y—NY It is easily seen that the Stieljes
transform, denoted ¢p/p(2) in the following, of this free addditive convolution product is solution of the
familiar equation

1
Tw(dT)
1 + TtMp(Z)

tup(z) = — (3.182)

z—ci [

In the following, we denote by parp the corresponding probability measure. It is clear that coincides
with the equation verified by the Stieltjes transform of the limit eigenvalue distribution of the random matrix
%X}{, (I x Ry)Xn where X isa M L x N complex Gaussian random matrix with unit variance i.i.d. entries.
We note that this result could also be easily obtained using the Gaussian technics developed in [32] in the
case where Ry is reduced to a multiple of 1.

According to Proposition the limit eigenvalue distribution of W}k Wi, NW NWp N is pyp X uyp. In

the followmg, we denote by v thls measure and by f(z) its Stieltjes transform. To find an equation satisfied

by f , We use m and (3.178 j give us immediately

1+ 2
X%JP(Z)-

X (2) =
By replacing here z with 1¢;(z) and taking into account (3.176|) we obtain

_ 1+ V5(2)

o(n) Xup(r(2)). (3.183)

We notice that by definition (3.175]), we have

zt . do(t) 1-/1
(%) = do(t) = —1l=—f1-)—-1 3.184
w(o) = [ i - [ (%) (3.184)
Putting this into l) and replacing z with % give us
2f(2) s ( (1)>
— = D - = 1
Tt 27(2) Xmp | ¥ p,

From this, it is straightforward to obtain the expression of f (z). For more convenience, we introduce the
function ¢(2) = xarp(1s(2~1)) which is analytic in the neighbourhood of infinity. It holds that

f(z) = (°¢*(z) —2) ", (3.185)

It remains to determine g(z). For this we use (3.184]) for ¢¥asp, tarp and replace z with xasp(z). Then (3.176))

gives

1

S o Rt <><M11-x>> = tap(Xarp(2) = —(1+ 2)xurp(2).
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To obtain the equation for ysp it is sufficient to use the above expression of tMp(X]T;P(Z)), and to plug it
in (3.182) with z = x;,p(2). Therefore, we obtain that

(14 2)xmp(z) = 0 Tdio(7)

xur(z) J 1 (1 + 2)xmr(2)

After simple algebra we get that

z . / TduJ(T)
(1+Z)XMP(Z) * 1—T(1+Z)XMP(Z)‘

We finally replace z by 17(2~1) in the above equation. Using (3.183)), it is easy to see that the Lh.s. is equal
to zg(z). To evaluate the r.h.s., we use again (3.183) and obtain that ¥;(271) = 2¢2(2)(1 — z¢?(2)) !, and
that

_1 [ erde(r)
o) = /R N (3.186)
1 —2g%(2)

1) = / T"Jci‘i;zz) . (3.187)
T+ 1 — zc2t2(2)

The equations (3.186]) and (3.187) are identical up to factor —c,. Since it can be shown that Eq. (3.187) has
a unique solution on the set of Stieltjes transforms, we obtain that g(z) = —c.t(z). Therefore, (3.185)) leads

to the equation

~ 1
fz) =~ [1— z(cat(2))?]

The Stieltjes transform of the limit eigenvalue distribution of WyWj WPW; is clearly equal to é ( f (z) + %) .
Using the expression (3.173)) of ¢,(z), we obtain immediately that

L (ﬂz) + 1o ) —1(2).

Cx z

We have thus proved that the limit eigenvalue distribution of WyWj WpW;J can be evaluated using free
probability technics.
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Chapitre 4

In the presence of signal.

In this chapter, we assume that signal (uy)nez is present, and evaluate its influence on the eigenvalues and

. . YYF (YN . . .
eigenvectors of matrix % (%) . For this, we use a classical approach based on the observation that

matrix YJ;\S,/p is a finite rank perturbation of matrix due to the noise (v, )pez. It will be assumed that
for each N large enough, the support Sy of the support of measure py associated to ty(z) is reduced to
the single interval Sy = [0,z 4], see paragraph for more details on the assumptions that are needed to

establish solid mathematical results.

ViVy
N

4.1 Signal model and first assumptions

We recall that the useful signal (uy,)nez is generated by the minimal state-space representation (1.2). As M
is supposed to increase towards +oo, it is first necessary to precise how the parameters of ([1.2)) depend on
M. We formulate the following assumptions :

Assumption A-2:
— (wn)nez s a K—dimensional white noise sequence such that E(wywy) = I, and which is
independent of M and N
— The dimension P of the state-space does not scale with M and N and matrices A and B are
independent of M and N.
— Matrices C = Cy and D = Dy depend of M and thus on N, and are supposed to verify

sup ||Cn|| < 400, sup ||Dn|| < 400 (4.1)
N N

We assume moreover from now on that L > P. As a consequence of Assumptions [2] the P-dimensional
Markovian signal (zy,)nez is independent of M and N. We define matrix Hy as the M L x K L block-Toeplitz
matrix defined by

Dy 0 cee e 0

CnB Dy 0 0
Hy = : CyB . . (4.2)

CyA' =3B :

CnAF2B CyA'™3B '-. CyB Dy
Then, it is easy to check that the M L-dimensional vector u = (ul, ... ,ug " Lfl)T can be written as
ul = (ON,”HN)< o ) (4.3)
wn

where wX is defined as u% and where we recall that the observability matrix Oy is defined by 1} We
formulate the following assumption :

Assumption A-3: The rank r < P+ KL of matriz (On,Hn) remains constant for N large enough.
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As L > P, the rank of matrix Oy is equal to P so that r > P. The covariance matrix RL \ = E(ufuil) is
given by
R, 0

L
Ru,N - (ONvﬂN) < 0 Ixp

) (On,HN)*
where R, = E(z,z}) coincides with

R, = ZAkBB*A*k
k=0

R, is positive definite because the minimality of the state-space representation (|1.2]) of w implies that the
pair (A, B) is commandable. We deduce from this and from Assumption [3 that Rank(RY,,) = r for each N
large enough. In the following, we denote by

Rl y = ONALOR (4.4)

the eigenvalue / eigenvector decomposition of Rﬁ,N where A?V = Diag((S%N, ey 537]\,) and where Oy is the
ML x r orthogonal matrix corresponding to the eigenvectors of Ri N-

In the following, we denote by X7 y and X1y the P x N matrices defined by

Xinv = (21,22,...,2N), Xp41,N = (041, T042,- -, TN4L) (4.5)

and by Ny n and N, y the KL x N matrices defined as the analogues of Y; y and Y}, ; obtained by replacing
M—dimensional vectors (yn)n=1,. ,N+20—1 by K-dimensional vectors (wp)n=1,..,N4+2r.—1. Matrices Uy y and
Up,n are defined in the same way from (Un)n=1.... N+2r—1. It is easy to check that

UpyN:ONX1+/HNNp7N, Uf7N:ONXL+17N+/HNNf7N (4.6)
As P, K, L remain fixed, matrix

1 /X .
N ( N;J]:[, ) (Xiny Non)

converges almost surely towards the covariance matrix of vector ( 7 >, i.e. matrix
w

n
R, 0
0 Ikr
As the rank of this matrix is obviously P + K L, the same property holds for < ﬁl’N ) for N large enough.
»,N
Moreover, (4.1)) implies that

sup [ (O, Hw)|| < +00 (4.7)
N
from which we deduce that 0 U
p,NVp N
IRy — 2N 0 (1)
It holds similarly that
UrnUs N
IRy — =5l =0 (4.9)
It is thus clear that the column space of matrices U, y and Uy y both coincide with the r—dimensional column
space of (On,Hy) for N large enough. We introduce the singular value decompositions of matrices L\[;]ivv and
U .
VN

Up,N UsN

VN VN
where ©; v, A; N, (:)@N are ML xr, rxr, Nxr matrices that of course depend on N for i = p, f. l) and
(4.9) imply that [|©; NO; y — ONOY| — 0 for i = p, f and similarly, that [|A; v — An|| — 0 for i = p, f.

= @p,N Ap,Né;,Na = @f,N AﬁNé}’N (4.10)

69



We also remark that

1 X , * * Iy * * El‘n (x;,wﬁ*)
g () (i) » B | (o) | = | Bl |

Therefore, we obtain that

1 XL+1,N * * O; E Tn+L u'fl{*

because ul* = (z7,wh*)O% (see (4.3)). It is easily seen that matrix E (z,4ru}l) coincides with Cny =

n n
(AF=1G, ... Q). Notice in particular that matrix G coincides with E(x,1u}). Moroever, as R]Lqu

E(uﬁJrLu;"LL) is equal to OnCy, it holds that

Uf,NU;:N
N

L
o Rflp,NH —0

UrNnU* U NU* ~ ~
Hence, Rank (%) = P for each N large enough. As f’NN 2 coincides with O NAfNO} NOpNANO, N,

we obtain that Rank (Avaé’}’NénNAp’N) = P, Rank (AN@;}Nép,NAN> = P and that Rank (é?,Nép,N) =
P for each N large enough. In the following, we denote by I'y the rank P r X r matrix defined by

I'y = ANO} yO, NAN (4.11)

It is clear that
IR}, v — ONTNON| — 0 (4.12)

If we consider the singular value decomposition
Iy = YNENTY (4.13)

of matrix I'y, then, (4.12]) implies that the P non zero singular values of R}ﬁp y have the same asymptotic

behaviour than the P non zero singular values (xxn)k=1,. p of I'y.

4.2 New assumptions and their consequences.

Vi

In order to simplify the notations, we denote by ¥; xy and W; x matrices X; y = Y’ﬁ and W; y = \/NN for
i =p, f. It is easy to check that
- A;O%0,A, I S
* * Fop=p Ar ~p
We denote by A and B the matrices defined by
A= (0, W;6,4,) (4.15)
and -
B = (€, W,0;4/) ( APGPI@fAf Ig > (4.16)
It is easy to check that
—zI* Epr _ —ZI* Wpr I A 0 0 I A 0* (417)
Xy -zl WoWi;  —=z1 0 B I, 0 0 B
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—z 1 WfW;

We denote by Qu(z) the resolvent of matrix ( WoWi 21

>. Consider a positive real number y such

0 WWy
WW; 0
eigenvalue will be precised below). For z = y, the left handside of (4.17]) can also be written as

—yl 35N -yl WWr A0 0 Iy AT 0
<2p2; —yI )\ W,W; -yl b +Qw®) g g Iy 0 0 B

(4.18)

that y is not eigenvalue of < > for each N large enough (some conditions on such an

0 N
5,500
handside of (4.18) vanishes. Using the identity det(I + EF') = det(I + F'E), we obtain that y is an eigenvalue

of ( 0 % > if and only

Y50
det (L;T + < “3* [g* )Qw(y) ( “Sl g, > < IST I(z)r >> =0 (4.19)

det (147» + FN(y)) =0 (4.20)

Therefore, y is eigenvalue of < if and only the determinant of the second term of the right

or equivalently if

where Fiy(z) is the 4r x 4r matrix valued function given by

[ A Quwyr(2)B A*Quw, (Z)A>
Fviz) = < B*QW,;J‘(Z)B B*Qwﬁ(Z)A (4.21)

In order to study the asymptotic behaviour of the zeros of Eq. (4.20), it appears necessary to formulate
0 WWy

WyW3 0

for each N large enough, and that insure that matrix Fy(y) has a limit when N — 4o00. Some of these

assumptions are mainly purely technical in that they essentially allow to establish well founded mathematical

results, but, in practice, we believe that they are not very important. We need to distinguish 3 kinds of extra-

assumptions that allow to precise under which conditions y is not an eigenvalue of (

assumptions.
— Assumptions on the asymptotic behaviour of the eigenvalue distribution of matrix Ry

Assumption A-4: [fwy = ﬁ 224:1 Ox v 18 the eigenvalue distribution of matriz Ry, it is
assumed that

li AMN=Ap i A = A_ 4.22
AR ALY = A i Ay = A (4.22)

We note that A\_ » > a > 0 and A4 » < b where a and b are defined by . Moreover, sequence
(wN)N>1 15 assumed to converge weakly towards a probability measure wy, which, necessarily, is
carried by [A— «, A4 «]

Assumption A-5: It is assumed that for each N large enough, eigenvalues (\g,N)k=1,.. .M satisfy
condition , so that support Sy of pun is equal to Sy = [0, x4 n]|. Moreover, we add the
following condition : for each N large enough,

k—1

ALN = Ap,N S K (4.23)
for some nice constant k.

— Assumptions on the asymptotic behaviour of matrices depending of the useful signal.
Assumption A-6: r X r matrices Ay and I'y = AN(:)?Nép,NAN converge towards matrices A,
and T'y respectively. It is moreover assumed that Ay > 0.

— Assumptions on the asymptotic behaviour of matrices depending both of the useful signal and the
noise.
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Assumption A-7: We denote by (fr,N)k=1,..m the eigenvectors of matriz Ry, and consider the
M x M matriz-valued function positive measure wf; defined by

M
R
Wy = Zfﬁk,N fenfin
k=1

We introduce the r x r matriz-valued measure vy defined by
dyn(N) = 0% (I ® dwi (M) On (4.24)

Then it is assumed that the sequence (Yn)n>1 converges weakly towards a certain measure y.
We have first to establish consequences of Assumption [4] and Assumption [5} The following result holds.

Proposition 4.1. — We denote by t,,, the Stieltjés transform of limit distribution w.. Then,

lim ty, (W) = —00 (4.25)
’UJ—))\+7*,U}>>\+,*
— The sequence (w4 N)N>1 converges towards a finite limit w, . which verifies wy . > Ay «.

— The sequence (x4 n)N>1 defined by x4 n = ¢n (w4 N) converges towards a finite limit x4 .
— If ¢ (w) is the function defined on C — [A_ ., Ay 4] by

Mo\ doo 2 Mo ) doo
by (w) = (cxw)? (/}\ AZ_*(:\)) + cow? /,\ /\Z_*(;\) (4.26)

— %k — %

it holds that
Tix = Pu(Wi ) (4.27)

— The sequence (un)nN>1 converges weakly towards a probability measure p.. The support Sy of ps is
included into [0, x4 .|, and the Stieltjés transform t.(z) of u. verifies the equation

A x A
t*(z) :/ cxtx(2) A d/«L*()‘) (428)
A =21+ o)

for each z € C — [0, x4 4.
— Moreover, if wi(z) is the function defined on C — [0,z ] by

1
wy(2) = cezty(z) — h?) (4.29)
then, wy is holomorphic on C — [0, x4 .| and verifies
dx(wi(2)) = 2 (4.30)

for each z € C— [0, x4 4]

lim t«(z) exists, is finite, is still denoted t«(z4 «), and Eq. holds for z = x4 4

T—T4 5, LT«
(4.31)

Moreover, we have
Wy oy = Wi (T ) (4.32)

Proof. We first establish (4.25)). We have to prove that for each A > 0, it exists 7 > 0 such that

M duwy ()
—t,, (W) = A
(= [T

— %
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whenever w > A, and w — Ay, < 7. For this, we consider w > Ay ., a condition that implies that
w — A1,n > 0 is bounded away from 0 for N > Ny(w) large enough. We remark that

M

Ly L1y !
M &~ w — A n B M= w—=Aps+ A = AN+ AN — AN

For each § > 0, (4.22) implies that it exists N1(J) such that |\« — A\ n| < d for each N > N;(6). Morever,
|i leads to My v — A v < K (%) Therefore, we obtain that

1 &1 1 & 1 1 1
DD vy > du
Mkzzlw—Ak,N_MkZ:lw—M,*Jrém(’z\j) _/0 W— Ay s+ 0+ Ku

Therefore, for each B > 0, it exists 7 such that w — Ay <7 and § < n imply that

1
1
/ du> B
0 w—)\+,*+5+/€u

For these choices of w and 9, it holds that

1M 1
- N B
M;w—AkW

for each N > Max(N;(9), No(w)). The weak convergence of wy towards w, implies that for each w > A\; .
such that w — Ay« < n, and for each v > 0, it exists an integer Na(w,~y) such that

Mo dw,(A) 1 L1
— - - B—
/)\_7* w—)\>M;w—>\k7N v "

for each N > Max(Na(w,~y), N1(9), No(w)). Choosing B = A+, we have shown that —t,,, (w) > A as soon
as w — Ay < 1.

In order to establish that (wy y)n>1 converges towards a finite limit w ., we first recall that Lemma
implies that sequences (w4 n)n>1 and (24 n)n>1 are bounded. We put wy , = liminfw, x and w} =
limsupwy n, and establish that w, , = w? . For this, we first prove that w; . > A; .. We first remark that
wy N > AN for each N. Therefore, it holds that w, « > Ay .. We thus assume that the equality holds, and
show a contradiction by using (4.25]). We consider a subsequence (w4 iy )n>1 extracted from (wy y)n>1 and
converging towards w4 ., assumed to be equal to Ay .. We denote by M (ky) the value of the dimension of
the observations corresponding to the number of observations kn. x4 iy = @k, (Wi ky) is given by

Adwyy (V)2 Adwyy (V)
i = enen)® ([ S ) e, [

Therefore, it holds that

M (k)
Adwi, (M) )2 1 Ai
2 kn 2 i,kN
ko /AR I e Y S 4.33
Tk > (Gl k) </ Wiy oy — A) (o)™ | 37 (kn) = Wiy = Aiky (4.33)
For each k =1,..., M(kn), we express wy g — Ajky @S

Wt kn — )\i7kN = Wt ky — )‘Jr,* + )‘Jr,* - )‘l}/ﬁ\f

As it is assumed that wy . = Ay, for each § > 0, it exists No(d) for which wy p, — Ay« < ¢ for each
N > Ny(0). Therefore, we obtain that




Assumption [ implies that

Ai A N dw,
lim —— Z LN = / 7)\ wi(A)
N—+oco M(kN) i1 (5 + )\+,* — )\iakN A . 6 —+ )\+7* -
Therefore, for each v > 0, it holds that
M(kn)

1 3 Nikn - /Hf* Adw.(N) .
M(k]v) i—1 (5 + A_A,_’* - Ai,kN )\77* 5 + )\_A,_’* - )\
for each N > Ny(6,7). (4.25)) implies that for each A > 0, it exists n > 0 such that

/H:* A dw, (N
by 5 + )\_5,_7* - )\

—v>A

as soon as 0 < 7. For such a choice of §, we have shown that

M(knN) M(kn)

1 )\’L kN 1 )\Z kN
—_— : > : > A
M(kN) ZZI W kn — )‘i,kN M(kN) ’Lz; d+ >\+,* - )\ika

for each N > max(Ny(5), N1(,7)). Using (4.33)), this implies that imy_, o0 4k, = +00, a contradiction
because sequence (x4 n)n>1 is bounded. This establishes that wy . > A4 ..

We consider function ¢, (w) defined by . As A,y and A\, n are assumed to converge towards A4 . and
A_«, the Stieltjes transform £, (w) of wy converges uniformly towards ¢, (w) on each compact subset of
C — [A~ 4, A4 «]. This immediately implies that ¢x(w) and its derivative ¢ (w) converge uniformly towards
¢+(w) and ¢, (w) on each compact subset of C — A Aps). As wy . > Ap i, sequence wy , stays in a
compact subset of C — [A_ 4, A1 ], and therefore, it holds that

Brn (W ) — Do (W o) = 0, B (W) — Do (W k) — 0

As ¢;€N(w+7k1\,) = 0 for each N, we deduce that ¢, (wi xy) — 0, and therefore that ¢,(wy.) = 0. We

obtain similarly that gb;(wj_) = 0 by introducing a subsequence w, ;,, converging towards w7 . We claim
that y — ¢.(y) is srictly increasing on |wy ,4+o00[. To justify this, we remark that ¢y is strictly increa-
sing on [wy n,+0o[. Therefore, if wy, < w; < wy, it holds that ¢n(w1) < ¢n(w2), and therefore that
dw(w1) < pu(ws). The equality is impossible because it would imply that ¢, (y) = 0 for y € [wi,ws], a
contradiction because ¢, is holomorphic in a neighbourhood of [w;,ws]. Similarly, ¢, is strictly decrea-
sing on JA4 ., w4 «[ because ¢y is strictly decreasing on |Ay ., wy n[ for each N. If wy . < w?, ¢, would
have to be strictly decreasing on A4 ., w?[ and strictly increasing on |wi,+oo[ for the same reasons, a
contradiction. Therefore, w, , = w, and imy_, 4o w4 N = Wy s As oy (w4 N) — ¢x(wy n) — 0 and that
dx(wy N) = du(wy 4), we evantually get that z vy = ¢n (w4 n) converges towards x4 4 = ¢y (w4 «). This

establishes (4.27)).

Propositioncan be immediately generalized to the case where the eigenvalue distribution wy = ﬁ 22/1:1 O
is replaced by its limit w,. Therefore, for each z € CT, equation (4.28)) has a unique solution ¢,(z) such that
t«(z) and zt.(z) belong to CT. Function z — t.(z) is an element of S(RT), and thus coincides with the

Stieltjés transform of a finite positive measure p, carried by RT. Moroever, u,(RT) = [ /\/\f** Adwi(N) =

limpy 400 ﬁTr(RN) = limpy_s 100 un(RT) and

s

At x A x
/ N (\) = ¢ / A dws () / M dw, (\) < 400 (4.34)
R+ A . A

In order to establish that py converges weakly towards ji, it is sufficient to establish that for each z € CT,
limpy 400 tn(2) = t«(2). The proof is standard, and thus omitted. We just mention that, as in the proof of
Proposition , we need to control m For this, as in the above proof, we use the observation that
1 1
3] = 2
1= 2(et(2))?] 7 2] (e Im(t(2)))
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and take benefit of (4.34]) to establish, as in the course of the proof of Lemma that

Im(z)

Im(t.(2)) > K R

for some nice constants § and k. As x4y converges towards x 4, it holds that pn ([z4 «+e€, +00[) = 0 for each
N large enough. As pin — fus, this implies that . ([z4 «+€,+00[) = 0 for each € > 0, i.e. py (]2 4, +00[) = 0.
Therefore, the support S, of p is included into [0, x4 ]. Function ¢.(z) is thus holomorphic in C — [0, x4 ,].
We now justify that is still valid if z = 2 € R™*U]x 4 , +oo[. For this, it is sufficient to prove that the
right handside of is holomorphic on C — [0, 24 .]. We consider function w,(z) defined by (4.29). As t,
is holomorphic in C — [0, 24 4], so is w,. Moreover, w,(z) is of course real if > z , and = < 0. Expressing
the right handside of in terms of w,(z), we obtain that can be written as

Wy (2 At W
L) = z() /A m (4.35)

— %

If x < 0, wi(x) < 0 because t.(x) > 0. Therefore, the right handside of is analytic on C — R™.
In order to show that it is analytic on C — [0,z ,], it is sufficient to establish that if # > z, ,, then
wy(x) > A . We remark that z > x4 y for N large enough. As ty(z) — t.(z) when N — +o0, we
get that wy(x) — wi(x). As © > x4 y, it holds that wn(xz) > wy(z4 n) = wy n. Therefore, wy(x) =
Empy_too wn(x) > UMy yyoo Wi N = Wi . As wy > Ay s, we conclude that wy(x) > A, as expec-
ted. Therefore, holds on C — [0, 24 ,]. We notice that this implies that ¢.(w«(2)) = z for each

2z € C— 0,24 4], i.e. that (4.30) holds.

As function x — t.(x) is increasing on |z ., +00[, limy sz, , z>z, . t«(2) exists. In order to check that it
is finite, we remark that wy(z) > w4, > Ay, for © > x4 .. Hence, the right handside of remains
finite on |z, «, +oo[. This implies that limg ., , 2>z, , t«() is finite. We deduce from that w,(x) also
converges towards a finite limit when z — x ,. This limit is still denoted by w(z4 ). We establish that
Wy (24 +) = wy . For this, we remark that ¢, (ws(z)) = x for & > x4 4. As Wi (x) > Wi > A s, Ou(wi())
converges towards ¢s(ws«(z4+)) = x4« when  — 4 . Moreover, x4 , = ¢u(Wi(T4 +)) > du(wy ). (4.27)
thus implies that ¢u(wi (24 4)) = ¢u(ws ) As ¢, is strictly increasing on Jwy ., +oo[, this implies that
Wy (T4 ) = wy 4. We also remark that taking the limit in when z — z , leads to the conclusion that
, and therefore , also hold for x = 4 . This completes the proof of Proposition .

We recall that V]:\F, is the M x M matrix-valued positive measure associated to matrix-valued Stieltjés transform
Tn(z), and introduce for each N the r x r matrix-valued measure Sy defined by

dfn(N) = Ox (I ® dvi(\) On (4.36)
Then, the following result is a consequence of Assumption [7]

Proposition 4.2. The sequence of measures (Bn)n>1 converges weakly towards a measure 3, whose support
is included into [0, .]. The Stieltjés transform Tg, (z) of By is given by

Wi (2 A« 5
Tp.(2) = ) /A Ad’Y(A) (4.37)

z — wy(2)

for each z € C — (0,24 «|. Moreover, if Tg, (z) represents the Stieltjés transform of Sn, then, it holds that

. [ dye(
To(o) =, Jim | Talo)= fim T (e =0t [ 00 (438)

LT 4 5, T>Th N—+o00 LU_|_7* A — W %

— %

Proof. We first notice that yn ([0, \1,§]) = I, and yn (JA1,n, +00[) = 0, and that, for each € > 0, yn ([0, A4 .+
€]) = I and yn (] A+ «+€,+00[) = 0 for each N large enough. As vy — 7., we obtain that v, ([0, A+ «+¢€]) = I,
and v, (JA4 « + €, +00[) = 0 for each € > 0. This implies that v,([0, Ay «]) = I, and that v, (A4 «, +o0[) = 0.
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As YN — 7, the Stieltjés transform T, (w) of yn converges towards the Stieltjés transform T, (w) of v, for
each w € C — [0, A1 ,]. In other words, for each z € C — [0, A1 ,], it holds that

/ AN dyn (A) M dyi ()
0

A—w

(4.39)

N —w :@TV(IL(@(RN—MI)_l)@N—)/O

The convergence is moreover uniform on each compact subset C —[0, A .]. For each z € C— [0, x4 n], matrix
Tn(z) can be written as

wy (2)

Tn(z) = (Ry —wn(2)I)7

This relation also holds for each z € C — [0, x4 ] if N is large enough. Therefore, T3, (2) is given by

wN(2) o 1 wN(z) /AI‘N dyn(A)
T = Oy (L Ry — I Oy =
By (2) ——ON (L ® (By —wn(:)])"") On Pl N N
We now prove that for each z > x, ., then
wi(@) [ dy(N)
Ty(o) 22 [ (00 (4.40)

For this, we first notice that wy(z) — wy(x), and remark that

Mo dyw () M N dyn(\)
/0 N (@) /0 F—waa) v @) e ”/0 O on(@)(r — w. (@)

dyn (N

As wy(z) — wy(z), for N large enough, wy (z)—A4 .+ > 2 (wi(x)—Ay,.) > 0. Therefore, fo)””* o @) O ())

is upper bounded, and
//\+,* d’YN()\) /A+,* d’YN()\)
—_— = —F— =0
o A—ux@ Sy A—w)

when N — 4o00. Hence, (4.39) implies that

Wi (x)T

TN

Ty () = (wi(x)) =0
As YN = Vs, Ty (ws(z)) converges towards T, (w«(x)). Therefore, we have established (4.40). As functions
T, are Stieltjes transforms, Montel’s theorem also implies that (4.40) also holds for each z € C — [0, x4 .

Moreover, function z — w*Z(Z)TvN (ws(2)) is the Stieltjés transform of a r x r—valued positive measure [,

carried by R*. It is moreover easy to check that 8.(RT) = I,. The convergence of T3, (z) towards T, (z)
thus implies that (8n)ny>1 converges weakly towards (. For each N, By is supported by [0,z n], and
Bn([0, 24 N]) = Ir. Therefore, for each § > 0, it holds that Sy ([0, z4 «+06]) = I, and Sy (Jzy «+0, +00[) = 0.
Moreover, the support of 5, is included into [0,z .| so that S, ([0, z4 ] = I;.

We finally establish (4.38)). For this, we remark that

W4+ N _
Ty (vpn) = ——Ox (I ® (R —wy ) ") Op
CC+7N
It is clear that Zjix — I;I: = w*ﬁ:*) and that ©% (IL ® (Ry — w+,N)*1) On has the same asymptotic

behaviour than ©% (I ® (Ry — w4 «) ') O, which itself converges towards T, (wi ) = T, (Wi (T4 4)).

We have thus proved that
’LUJD*

lim Thy (2 n) = 225 T (w,(2s,0))

N—+o0 T4 %

Therefore, (4.37)) immediately implies (4.38]).

We finally conclude this paragraph by characterizing the set of all positive real numbers y that are not
. lue of matri 0 WWy
eigenvalue of matrix W, W} 0 .
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Proposition 4.3. Assume that y > /T .. Then, for each N large enough, y is not eigenvalue of matriz

0 nyNW;N 2 . * *
< Wp,NW;N 0 , and y° is not eigenvalue of Eprszf.

Proof. As y > /21, it exists Ny such that y > /2 n for each N > Ny. Therefore, y does not belong to

Un>nN,Sn. Theorem [3.4|thus implies that y cannot be one of the eigenvalues of a matrix N

for N > Ny.

4.3 Asymptotic behaviour of the eigenvalues of ;> %35,

In this paragraph, we characterize the possible eigenvalues of EfZ;EpE} that escape from the interval

2p,NZT},N

than ,/Z1 .. Almost surely, for each N large enough, function Fi(z) defined by ({4.21)) is holomorphic on
C— [-yZ3.~, vT.~)- and on C — [—\/x4 » + 8, \/x 4« + ] for each 6 > 0.

[0,24 4], or equivalently, the positive eigenvalues of < that are strictly greater

We first establish that the sequence of analytic functions (Fn(z))n>1 almost surely converges uniformly on
each compact subset of C — [~ /T ., /T4 .| towards a deterministic function Fi(z) which is analtyic in
C — [~/T+x y/T1 ] Using a classical stability result of the zeros of an analytic function (see [4] and [10]),
this will imply that the solutions of the equation det(/ + Fy(y)) = 0, y > /71 «, will converge towards the
solutions of the limit equation det(I + Fy(y)) = 0.

In order to study the asymptotic behaviour of Fp, we first consider the asymptotic behaviour of matrix
A*Qw n(pf)B, which is given by

e ~ A OO A, I
A*Q B — f O.. W.0 A v fef Ar
W,N(Pf) ( ﬁp@;W}k ) QW,N(Pf) ( py YWpf f) < p[T 0 )

In order to study matrix A*Qw n(pf)B when N — +o0, it is necessary to evaluate the asymptotic behaviour

of sesquilinear forms of matrices Qw,n (p.f), W; Qw,n (pf), Qw,n (pf)Wp and W} Qw,n (pf)W). The following
result holds.

Lemma 4.1. For each z € C— [~ /T1 ., \/T1 ] and for each bounded sequences (an,by)n>1 and an, by of
M L—dimensional and N —dimensional deterministic vectors, it holds that

— ay Qwn(pf)bn — 0 almost surely

— ay Wi Qwn(pf) by — 0 almost surely

— ay Qwn(pf) Wy by — 0 almost surely

~ c 2))2 kT
— ay W}‘ Qwn(pf) Wybn + % anby — 0 almost surely.

Moreover, the convergence is uniform over each compact subset of C — [—,/Ty «,\/T1.x and it holds that,
almost surely

0 0
A*Qwn(pf) B — <  (entn(2))? ) -0 (4.41)

(entn (2l N O

the convergence being uniform on compact subsets of C — [—\ /T4 «, /T -

Sketch of proof. The proof of this result uses ingredients that are very similar to the calculations of Pa-
ragraphs and We therefore only provide a sketch of proof. When z € C™, the first item follows
from E(Qw,n(pf)) = 0 and the Nash-Poincaré inequality. The convergence for each z € C— [~ /T x, \/T1 ]
follows from the observation that almost surely, for each § > 0, functions (a} Qw n(pf) bn) are analytic on
C - [—\/x+,* +9, \/x+,* + 9] for N large enough. The use of Montel’s theorem allows to prove the almost
sure convergence towards for each z € C — [, /71 &, /T «], as well as the uniformity of the convergence on
each compact subset of C — [~ /T5 «, \/T 1] To establish the second and the third item when z € C*, it is
sufficient to establish that E(W}‘ Qwypr) =0, E(Qwyps Wp) = 0, to use the Nash-Poincaré inequality, and to
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extend the convergence domain using the Montel’s theorem. We note that the sequences of functions defined
in item (ii) and (iii) are almost surely bounded on each compact subsets of C — [—,/ZTf «, \/T+.] because
matrices Wy and W), are almost surely bounded.

The proof of the last item needs to use the calculations of paragraph [3.4] to establish that

(evan(2)? ., 7

anb 0 a.s.
— (enan(2))? noN T B

ax Wi Qwn(pf) Wpby + :

for each z € C™. It is proved in Paragraph [3.5.2]that ay (2) —tn(2) — 0 for each z € CT. As an(2) = zan(2?)
and ty(2) = ztn(2?), this implies that an(z) — ty(2) — 0 if Arg(z) €]0,7/2[. This convergence domain
can be extended to C* using classical arguments based Montel’s theorem. From this, we deduce immediately
that
(exvan(2))®* (entn(2))?
1= (envan(2))? 11— (entn(2))?

for each z € C*, and that, for each z € CT,

=0

(entn(2))® 5

ay W; Qwn(pf)Wybn + 1= (entn(2)? anby — 0, a.s. (4.42)

Matrices Wy and W), are almost surely bounded. Therefore, for each § > 0, a} W3 Qw, N(pf) Wy by and

% are analytic on C — [—/z4 .+, /x4« + 6] and bounded on each compact subset of C —

[—\/T+ % /T+«|- Montel’s theorem thus implies that (4.42) holds for each z € C — [~ /T, \/T1 ]. Moreo-
ver, the convergence is uniform on each compact subset of C — [—,/T¢ +, \/T1 |-

(4.41)) is an immediate consequence of the statements of items (i) to (iv) and of the observation that r x r
diagonal matrices A, y and Ay y (resp. orthogonal ML x r matrices O y and ©,, ) have the same asymp-
totic behaviour than matrix Ay (resp. matrix Oy).

Using the same kind of arguments as in the proof of Lemma it is possible to establish the following
result.

Proposition 4.4. For each z € C — [—, /T, \/T+ ), it holds that

—1
—oy (2 + 2B @ Ry) @ 0
A" Qw,n(pp) A — N (Z T T lentn G @ N> N —0as.  (4.43)
’ 0 entn(z) A2

I—(entn(2))2 TN

* o ety (z) -1
B Quwn(ff)B— ( Iy 1 > ( On (ZI+ 1—4(5N5N(z‘))2IL®RN) On 0 ) < I I > S 0as.

I 0 I 0 I 0
(4.44)
0 — (entn(2))? Y
B*Qwn(ff)A- 0 1*(CNt6v(z))2 — 0 a.s. (4.45)
The convergence is moreover uniform on each compact subset of C — [—\/m, \/m]

Lemma and Proposition imply that for each z € C — [—,/T5 «, \/T+.+), almost surely, matrix Fi(z)
has the same asymptotic behaviour than the 4r x 4r deterministic matrix Fy n(z) defined by

Fd,N(Z) — ( Fa%,g\/(z) F;”]%,(z) > (446)

2,1 2,2

Fon(z) Fyn(2)
where the 27 x 27 blocks of Fy n(z) are characterized in Lemma and in Proposition The assumptions
formulated in Paragraph 4.2/ imply that matrix Fy n(z) converges for each z € C — [—-,/T5 +, \/T+ ] towards
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a limit F,(z), the convergence being uniform on each compact subset of C—[—, /5, \/T+ ). More precisely,
tn(2z) converges towards t.(z) uniformly on each compact subset of C — [0, x4 .|, which implies that tx(z) =
2tn(2?) converges uniformly on each compact subset of C — [—,/T1 ., /T1 4] towards t.(z) = 2t.(2%). We

(entn(2))?

z [y %’/ﬁ@\) We denote by Ty (z) the function defined by Tg, (z) = 2Tg, (2?), which can also be

written as

—1
notice that matrix — (21 + MIL ® Ry coincides with matrix I; @ Tx(z) = I ® 2Tn(22) =
1

ONUL ® Tn(2))On = Tpy(2)
Assumption |§| implies that T3, (2) converges uniformly on each compact subset of C — [—,/T5 ;, /T ]
towards the  x r matrix Tpg, () defined by
Tp,(2) = 2T5,(2%) (4.47)

J. T %_(:‘) is the Stieltjés transform of the positive matrix-valued measure

where we recall that Tp, () = |,

B«. All this imply that

F(l,l)(z)_ ( ( to())2 0 ) —>F171(Z>_ ( ( t?))2 " )
AN — _ (entn(2)? s * - _ G (2))" 1k
1—(IZN]‘ZN(z))2FN 0 T—(cats(2))2 ry 0

Ty ,s(2) 0 Ty, (2) 0
(1,2) N.B 1o 5.
F g) = C z — F’*7 zZ) = Cotu (2
W ( 0 oAl > ) ( 0 eipAl

T I s I I, I r: I
v = (o) e () e me= (T o) (T )

(entn(2))? (cxtx(2))?
F22(z) = ( 8 1—<cNt6v<z>>2FN ) S FM(2) = < 8 1—<c*t0*<z>>2F* )
where we recall that T, is defined by Assumption [6| The previous results show that (Fi(z))n>1 converge
uniformly towards Fi(z) over each compact subset of C — [~,/Ty «, /T1«]. It is thus reasonable to expect
that the solutions of the equation det(! + Fiv(y)) = 0 satisfying y > ,/Z1 , will converge towards the roots
of det(I + Fi(y)) = 0 satisfying y > /77 . In order to establish this, we use in the following the classical
stability argument used in [4], Lemma 6.1 (see also |10]). Before invoking [4], we have first to study the
solutions of det(I + Fi(y)) = 0.

For y > /Ty, we now express in a more convenient manner the equation det(f + Fi(y)) = 0. This equation

holds if and only
1 0 I 0
(52 Ywrmon (] )= s

g _ (T I\ '_(0 I
*=\r1 0) ~\r1 -1,

The matrix whose determinant vanishes in (4.48]) is equal to

where

0 I Tp,(2) 0
. _cnta(2) A2
I Cetmr 0 Tenerds (4.49)
Tp,(2) 0 0 I
ety (2) 2 g
0 Teter® 1 e

1—(exts(2))

As the lower diagonal 2r x 2r block of this matrix is invertible, its determinant is 0 if and only the determinant
of its Schur complement is 0. After some calculations, we obtain that det(! + Fi(y)) = 0 if and only if
det(/—G.(y)) = 0 where G«(z) is the 2r x 2r matrix-valued function defined for each z € C—[—,/z ., \/T+ ]

b
Bli(c*t*(z§§2 1—(c*t£(i))2 Tp.(2) AZ
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G.(z) can be factorized as

cxts(2) r:
0= (4 o ) e L ey (T 9)
0 Ts.(2) Y T A 0 I

For each y > /T, matrix Tpg, (y) is negative definite, and thus invertible. Therefore, det(/ — G4(y)) = 0

if and only
Cxtx () 2 I .
det << 1,(6*%(1,))2& Vot ™ ) - < (Ts *8’” 1 T - >> —0 (4.51)
* * Uk (Y —

Tt T (et ) (T5.(v))

In the following, we denote by H.(z) the 2r x 2r matrix-valued defined on C — [\/Z1 , \/Tx ] b

ct2) Az 4 o
Hoo) = [ Fleters: ~ (Ta) = (et-(2))? (4.52)
N W #AQ (Ts, (2))

Tt ()2 T (crta(2))2 Ba

H,(z) is of course holomorphic on C — [—, /T, /Z1.], and the solutions of det(I + F,(y)) = 0 coincide
with the solutions of
det (H.(y)) =0 (4.53)

where y > | /zy .. In order to characterize the roots of (4.53), we first establish the following Proposition.

Proposition 4.5. For each z € CT, Im(H,(2)) > 0, and function y — H,(y) is increasing in the sense of
the partial order defined on the set of all Hermitian matrices on the interval [,/T ., +00l.

Proof. It is clear that Im ((Tg,(2))~!) < 0for each z € C*. Therefore, in order to establish that Im(H,(z)) >
0 on C™, it is sufficient to prove that Im(H, 1(z)) > 0 on C* where H, 1(z) is the function defined by

oA Teior
mﬂ@=<‘mﬁ” QXM@&)

(I=(exta(2))?  1—=(exta(2))?

After some calculations, we obtain that

B 1 Im(cots(2))(1 4 |ests(2)[2) A2 Im ((cyte(2))?) T2
Immﬂw‘u—@mwww< n ((eata(2))?) T mmu@m+thWM)

It is clear that Im(c.t(2))(1 + |cte(2)|?)A2 > 0. Therefore, Im(H, 1(2)) > 0 if and only if

[Im (et (2))2)]?
Im(cata(2))(1 4 [eata(2)]2)

Im(cats(2))(1 + |cats(2)]?) A2 — AT, >0

or equivalently, if and only if
[ (eae))
[Im(cat(2)) (1 + [eata(2)[2))?

We first claim that A7T*A72T, A1 < I. To verify this, we notice that for each N, matrix A7 1F* AJQQFNAle
coincides with ©% 7, N@ N®p N@ #,~ which is less than I. Therefore,

ATITEADTLADY >0 (4.54)

lim AVTHYAVTNAR = ATIEAPD AT < T
N—+o0

2

[Im((cets(2))?)]
[Im(ext«(2)) (1+]ext«(2)]2)]

7 is equal to

I ((ete(@))]* 4[Re(cuta(2))]
(et (2)(1+ [eta(2)P) L+ leta(2)P)?
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For z € C*, Im(t,(z)) > 0. Therefore, it holds that (Re(c.t.(2)))? < |cuts(2)|? and that

[Im ((exts(2))?)] Alets(2)]?
Im(est (2))(1 + |eta(2)[2)]2 (14 [eats(2)[2)2

This establishes (4.54)) and Im(H,(z)) > 0.

2
<1

We now prove that y — H.,(y) is increasing on the interval [,/T7 i, +oo[. For this, we use the following
representation of holomorphic matrix-valued functions whose imaginary part is positive definite on C* (see
e.g. [16]) :

14+ Az do(X)
A—2z 14+ )\

where A is Hermitian, B > 0 and o is a positive matrix-valued measure for which

do(\)
Ir (1 + /\2> < Heo

H,(z) = A+ Bz + / (4.55)

H. (iy)
1y

coincides with

_ Tﬁaf (iy) 0
B = lim W T, (iy) = I2r

—+o0
Y 0 o

We notice that B = limy_,

and that for any interval [y1, y2], it holds that

1 Y2
=—1 Im(H, ]

o) = 1ty [ (i G+ )y
As Im(H,(y)) = 0 if |y| > /Z1x, the support of ¢ is included into [—,/Z} x, /ZTy). Therefore, we get
immediately from (4.55) that y — H.(y) is strictly increasing on |,/7y i, +0o0, i.e. Hi(y2) > Hu(y1) if
yo > y1. We also notice that the last item of Proposition implies that limy%m H.(y) = Hi(x4 )
exists and is finite. Moreover, it holds that H,(, /l‘+7*) < H,(y) fory > /5.

Corollary 4.1. The eigenvalues (arranged in the decreasing order) (Mp«(y))k=1,..2r of matriz H.(y) are
strictly increasing functions y on [\/T4 «, +00], i.e., for each k =1,...,2r, it holds that

A (Y1) < M (Y2) o /Trx < y1 < y2 (4.56)

Moreover, the number s of solutions of (taking into account their multiplicities) for which y > \/T+ «
belongs to {0,1,...,2r}, and coincides with the number of strictly negative eigenvalues of matriz H,(\/T1 ).

Proof. We have shown that if \/Z7 . < y1 < y2, then Hi(y1) < Hi(y2). The Weyl’s inequalities (see e.g. [24],
Paragraph 4.3) thus imply that (4.56) holds. Moreover, as matrix B in is equal to I, it is clear that
for each k = 1,...,2r, Ay «(y) converges towards +oo when y — 4o0. For £ = 1,...,2r, the equation
Mex(y) = 0 has thus 1 solution y > /&1 i if Ag(z4 ) < 0 and 0 solution if A\g(x4 ) > 0. holds
if and only one of the eigenvalues of H,(y) is equal to 0. Therefore, if we denote by § the number of po-
sitive eigenvalues of H.(\/z1 ), for j = 1,...,3, it must hold that A;.(y) > 0 for y > ,/z1 .. Moroever,
As+1,+(y/3 x) < 0 implies that the equation Az11.(y) = 0 has a unique solution y . > /7 . Similarly, the
equation Azi2.(y) = 0 has a unique solution denoted yo .. Moreover, as Ast2+(y) < Asy1(y) for each y, we
deduce that Agio«(Y1,+) < Asr1(y14) = 0. If Asi2.(y14) < 0, y2, must be strictly greater than y; .. As a
root of , Y1, has thus multiplicity 1. If Asj2.(y1,+) = 0, the multiplicity of y; . as a root of is
at least equal to 2. Iterating the process, we obtain that the number of solutions s (taking into account the
multiplicities) of is equal to s = 2r — 5. Moreover, solutions yi «, ..., Ys « satisfy y1 » < yo . < ..o < ys s

Corollary implies that Eq. det(/ + Fi(y)) = 0 has s (0 < s < 2r) solutions (yj «)k=1,.. s strictly greater
than /77 . We recall that, almost surely, the sequence of functions (Fyy(2))n>1 converges uniformly on
each compact subset of C — [—,/T ,/T1 | towards Fi(z). Using the arguments used in [4], we obtain
immediately the following result.
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Corollary 4.2. Almost surely, for N large enough, Eq. det(I + Fn(y)) = 0 has s solutions y1 v < ya,n ... <
Ys,N such that yp N > /Ty, and for each k =1,...,s, it holds that imy_s o Y, N = Yk, -

We have thus established the Theorem :

Theorem 4.1. Almost surely, for each N large enough, the s largest eigenvalues 5\1 N2> 5\371\7 of matriz
WinW, NW NWF  escape fmm the interval [0, x4 ], and converge towards p1 s > ... > pss > T4, defined

by pr « ysH_k,* fork=1,.
s and the limit eigenvalues (pg«)r=1,.s depend on the limit distributions w, and j, that are rather im-

material. It is thus more appropriate to evaluate the asymptotic behaviour of the largest eigenvalues of
Wi NWy yWpnW v by using the finite V' deterministic equivalent of H,(z). We thus define function Hy (z)

by

entn(2)) 2 _ —1 '3
Hy(z) = [ Tenentoy ~ (Toy(2) T (entn () (4.57)
N 'y enta(2) A2 _ (T (Z))_l :
(1—(entn(2))? 1—(entn(2))? TN B
For each 0 > 0, Hy(z) is holomorphic in C — [—y/z4 « + 9, /21 « + 6] and converges uniformly on each

compact subset of C — [~ /Ty «, /T ] towards function H.(z). Using again the approach of [4], we obtain
that, for each N large enough, the equation det(Hx(y)) = 0 has s solutions y; vy < ... < ys n that satisfy
Yk, N — Yk« — 0 when N — +00. Moreover, the convergence of x4 ny and wi y towards x4, = ¢«(wy ) and
Wy s = Wy(T4 ) imply that ty (x4 n) converge towards t, (x4 ). Therefore, leads to the following
Corollary.

Corollary 4.3. Hn(,/Z1 N) converges towards H,(,/Ty ). Moroever, for N large enough, s also coincides
with the number of strictly negative eigenvalues of matriz Hn (/T4 N). Finally, if we define pp N by ppn =

yikk Ny fork=1,... s, then it holds that j\k,N — pr,n — 0 almost surely.

Writing tx(z) as ty(z) = 2ty (2?), and using the expression (3.132)) of ty(2) in terms of wy(z), we obtain
after some algebra that matrix Hy(,/Z1 n) is given by

Hy(JT7N) = (1 +CN%Tr(RN(w+7NI— RN)1)> ( GN(F\/Jjﬁ-,N) GN(F}L . ) (4.58)

where Gn(/ZT+.n) is defined by

G (VT N) = CN%;”:]]VVA;TNRNWWI B) ™) [(O3(IL @ (wenT = Ry)Heon) ™ - A%] (459)

As (1+ en3;Tr(Ry(wy nI — Ry)™Y)) > 0, s coincides with the number of strictly negative eigenvalues of
the second term of the right handside of (4.58)).

In order to get some insights on the number of eigenvalues s that escape from Sy for each N large enough,
we first study the behaviour of s when ¢y — 0. Intuitively, we should recover the results corresponding
to the traditional regime, i.e. that s = P. For this, we remark that w, y, that depends on cy, satisfies
¢n(wy n) = 0. Therefore, the proof of Proposition implies that & Tr(Rn(wipn — Ry)~!) < 1. As
Ry > al, we obtain that aﬁTrRN(wﬁNI — RN)_l < 1, or equivalently

1 <1
M T Wi, N )\kN a

for each cx. This implies that liminf. o ws y—A1,x > 0, and that matrix (@}"V(IL ® (wy NI — RN)*l)@N)f1
remains bounded when ¢y — 0. As 4 v = ¢n (w4 N), it is easy to check that x4 v = O(cn). Therefore,

Tﬁ = O(y/cn), and Gn(/T+.~) — 0 when ¢y — 0. Therefore, when ¢y — 0,

v - (5 )
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*
As mentioned previously, matrix I'y has rank P < r. Therefore, the eigenvalues of matrix ( 1_,0 Fév )
N

are 0 with mutiplicity 2(r — P), (xx)k=1,..p and —(xx)k=1,..p where we recall that (xx)r=1,. p represent

the P non zero singular values of matrix I'y. Therefore, when ¢y — 0, s converges towards P. This is in

accordance with the traditional asymptotic regime where N — 400 and M is fixed. Indeed, in this context,
*

matrix Ef,NZ;,NZnNZ},N converges towards the rank P matrix R]Lc‘p <R§’|p> , l.e. for N large enough, matrix

Yy NE N, NE; n has P cigenvalues that are significantly larger the M — P smallest ones.

When ¢y does not converge towards 0, the presence of matrix Gy (/1 n) in the expression (4.58) in general
deeply modifies the value of s. In particular, the value of s depends on the singular values (xxn)k=1,.. P
of matrix I'y, but also on the diagonal entries (5,3 ~)k=1, . of matrix A%, or equivalently, on the non zero

eigenvalues of Rﬁ N = E(ufuzl). In particular, in contrast with the context of the usual spiked empirical
covariance matrix models, s may be larger than the number P of non zero eigenvalues of the true matrix
Rf|pR;‘c|p. This implies that if ¢y is not small enough, then estimating the rank P of matrix Rf|pR}§|p by

the number s of eigenvalues of Zf,NZ;NZp,NZ;Z,N that escape from [0,z n] does not lead to a consistant
estimation scheme, even if the signal u is powerfull enough.

More precisely, assume that matrix Gy (,/Z1 n) is invertible. Then, matrix Hy(,/Z+, ) and the block dia-
gonal matrix

0 Gn(yTTN) = i (Gh(yTEN))
have the same number of strictly negative eigenvalues. If we denote by s; and sy the number of stricty
negative eigenvalues of Gn(,/T+ n) and Gn(\/T+ N) — 'y (GN(\/m))_l Iy respectively, it holds that
s = 81 + s2. In order to evaluate so, we denote by Tﬁ a r X (r — P) matrix for which (T, Tﬁ) is unitary
(we recall that Ty is defined by ) It is clear that so coincides with the number of strictly negative
eigenvalues of the block matrix

( THGN YN — ENTHGN TNEN  THGN Ty >
T GNTN TGN Ty

GN(y/TTN) 0
e

We have denoted Gn(,/Zy n) by G in order to simplify the notations. sy also coincides with the number
of strictly negative eigenvalues of the block matrix

TGNy — THGNTE (Y GNTE) T TH G Ty — EnT4 G ThEN 0
0 TN GNTR
As it holds that
1

-1 _
TRGNTN = TRONTR (TR GNTR) TR ONTN = (TRGH Tw)

sg is equal to sy = s9,1 + S22 where 512 (resp. s22) represents the number of strictly negative eigenvalues of
(Y4GTN) = EnTRGV TNEN (resp. of YL GNTE).

As it is difficult to evaluate precisely s in general cases, we focus on particular contexts. We first consider the

case where matrix G y is negative definite, i.e. s; = 7. This condition holds if A%, > (0% (I, ® (wy nI — Ry)™)O%)

a condition which implies that all the entries of A?V are large enough. In particular, it is easily seen that
Gny < 0 as soon as 5371\, > wy N — Au,nN. As Tﬁ*GNTﬁ < 0, s22 coincides with r — P. Therefore, if all
the (5,% N)k=1,...r, i.e. if all the non zero eigenvalues of the covariance matrix RﬁN are large enough, then
s =2r — P+ s31 and s > 2r — P. In order to discuss on the possible values of s, we denote by Ky
the positive definite matrix —G. Then, s 1 coincides with the number of strictly positive eigenvalues of

(T}kVKg,lTN)il — ENY*NKX,IYNEN or equivalently, of matrix
_ 1/2 - & 1 - . 1/2
Ip — (TR EPTN) 2 En TR Ky ThEn (ThER Ty
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Therefore, s is equal to 2r if and only if

(T KR TN ENTR K TaEn (T Ky TN)"? < Ip (4.60)

This condition holds if and only if matrix Zn can be written as

_ - - \—1/2
=y = (TR K Tw) " By (T ) (1.61)

where En verifies ||[En|| < 1. This implies that for each k =1,..., P,
. e 1/2 < 1 \ L2
Xk,N :e;‘: (TNKNITN) / EN ( *NKNlTN> (7

where (e)r=1,. p represents the canonical basis of CP. Therefore, for each k, it holds that

1/2

* — Yot —14 —1/2
viv < lef (TR T0) 2 I (TR T ) el

or equivalently,
T~ -1 1/2 T Ar* —1A4 1/2
e < (FTR KR Trer) " (el TRKR! ey )
Therefore, if the (62’1\]),«:17._.7,« are large enough, s = 27 implies that the P non zero singular values (xx n)k=1,..P
of I'y have to be small enough. Conversely, s is reduced to 2r — P if and only =n can be written as

_ - _oN—1/2
En = (T Ky Tn) "2 Fy (T};,K;TN) (4.62)

where Fi verifies FiyFy; > Ip. Therefore, for each k =1,..., P, it holds that
. 1/9 o 1 \"L/2
Xew = e (YK TN)? Fiy ('r NKNl'rN) ex

and that L2
* — 1/2 Yot —1A4
Xk’N > (eCkFTNKNlTNek) / (egTNKNlTNek)

ough. In sum, when the non zero eigenvalues of the covariance matrix Rﬁ n are large enough, s > 2r — P,
and s is all the larger than the singular values (xx n)k=1,...,p of I'x are small, a rather non intuitive behaviour.

A different behaviour holds when matrix G(,/z+ n) > 0, i.e. s; = 0, a condition which is verified if all the
non zero eigenvalues ((5,3 N k=1, p are small enough. A sufficient condition is 5%]\, < wy N — Ayn. In this
case, s1 = S22 = 0 s = 591 < P. Moroever, s 1 coincides with the number of strictly negative eigenvalues of

(T}"VGR[lTN)_l — ENT”]‘VG;VPTNEN, or equivalently of matrix

Ip — (TRGRTN) 2 BTG TNEN (TRGHTN)

Using the same approach as when Gy < 0, we obtain that so; = 0, i.e. s = 0 implies that the (xx n)k=1,.. P
are small enough, while s = sp1 = P if the (x n)k=1,.. p are large enough. In sum, if the (6,% N)k=1,.. P are
small enough, s = 0 if all the (xx n)k=1,.. p are small enough, while s = P if the (Xk’N)k:]_:m’P are large
enough. We however notice that the (xx n)kg=1,. p and the (5,%,]\,);6:17“.,13 are not independent parameters. In
particular, it holds that ||T'y|| < 5%71\,, and therefore that x; ny < 5%71\, for each k = 1,..., P. Therefore, the

conditions that (6% N k=1, p are small enough and (X% n)k=1,. p are large enough may not be both verified.

In order to get more insights on the above discussion, we consider the simple case where P =1 and Ry =

a?Iy. wy y and x4 n are given by (3.143)) and (3.142)). Moreover, for each w > wy n, © = ¢n(w) > 24 N
and %ﬁTr(RN(wI — Ry)7Y) is equal to

o’en

(eyw)? iTr(RN(wI C Ryl =

x M w—0o2(1 —cp)
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Matrix G is thus given by

ocN

2 1/2
_ o 2\r A2
Gy = <w+,N—02(1—CN> ((w+,N o)1, AN)

As P =1, I'y is a rank 1 matrix. Matrices T and T n are reduced to r—dimensional vectors, and diagonal
matrix 2y is reduced to a scalar x .
We first consider the case where Gy < 0. This condition holds if and only if 537 N > Wi N — o2. Our results
show that s is equal to 2r if

RSN T B W 1 S S 11 S
o?cn = 0py — (we N — o?) e~ 0 n — (wyn — o?)

while s = 2r — 1 if

N e o?(1—cn) TR T3

T T
1-+% <0
o?en ,g 51%,1\7 — (w4, N = 0?) ; 5]%,N — (w4, N —0?)

When Gy > 0, ie. if 5%1\, < W4, N — 0%, s =0 or s = 1. More precisely, s = 0 if and only if

2 r 2 r 12
w —o0°(l1—c T T
1_X?V +N ‘;( N)Z | |2k 5 Z | |2k >0
ocy — (wy,N —0%) = by P (wi,n —0%) =6y
while s = 1 if
2 r 2 r 12
—o(1— T T
|2, e ‘; ( CN)Z | ’2k i \ \zk <0
o?cn P (wp N —0 )_5k,N P (wy N —0 )_5k,N

In order to confirm this behaviour, we evaluate more directly the value of s by studying directly the solutions
of the equation det(Hy(y/x)) = 0, or equivalently the solutions of

Gy(Vz) T
det< NFN n (%) > =0 (4.63)

that are larger than z n. In order to evaluate the solutions of (4.63|), we establish the following Lemma.

Lemma 4.2. z = ¢n(c? + (5127]\,) s solution of if and only T; = 0 or T; = 0. Moreover, if for each
k=1,....r, Yy and T} are non zero, then holds if and only if

L= (TG (va) ) (TG (V) 'T) = 0 (4.64)

Proof. If w is not equal to o2(1 — cy), 0% + 5% No-oo o+ 5§N, the left handside of |) can be written as

det( Gl\%(]\[\/f) GNF(}F\\[/:?) ) = det (Gn (V7)) det (Gn (V) — TnGn(Va) I TY)

Moreover, it holds that

— 1% * 1 Pk —14

det (Gn(vz) — TGy (vVa) 'Ty) = det (TL GN(\/E)TL) (T*GN(ﬁ)1T .3 <T Gy (V7) 1T)>
where we recall that T7; is a 7 x (r — 1) orthogonal matrix such that (T, Y3) is a unitary matrix. Therefore,
if w is not equal to o%(1 — cy), 02 + 5%]\], S0t + 537]\,7 it holds that

o (G0 T

Iy Gn(VE)
* 1 o 1
AeGr (VD) det(TH G (VA T) (e — k(TG (VD) 1T)) - (469
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|} still holds true when w coincides with one of the (o2 + 5k N)k 1...r because for each I = 1,...,r, the

-----

right handside of 1} has a finite limit when w — o2 + (5l, More precisely,

-1
1 [ w—0*(1—cn) ]T!k
T*Gn(v/x)~ 1T ( o’en Z (52 — (w —0?) -0

and

r/2
- - ~ 2 o2c
det(Gn (VX% (T*GN (V) IT) = 2 [T )y (62 — 62 _ TN
( N(f))XN( N(V) ) XN‘ l,N‘ kA1 (0N — O ) 5y T o%n

Moreover, if we denote by T]LV’Z the (r — 1) x (r — 1) matrix obtained by deleting the I-th row of T4,

r—1)/2
ex >< )/

det(YHGn(VZ)YL) = det ((YEH* YL T, (62 — 62 TN
(TG (V)T = det (03" T') Wiua(0fy — 3 3) T oy

This implies that the right handside of (4.65) converges towards

r—1/2
2 2
2 |5 NS/ 2 2 2 0°CN
—XN ’Tl,N’ det ((TN )Ty ) Wye1(0) v — Ok ) ((S?NJFG%N>

) e . Gn (V) 'y _ 2 2 1
which, of course, coincides with det < Ty Gn(V7) for x = ¢N(517N +0%). We denote by Tl,N the

[-row of Tﬁ Then, as Tﬁ is orthogonal, it holds that Tﬁ{,TﬁN + (Tj{,’l)* T]J\‘,’l = I,._1. Therefore,
L\ knp Lol
det ((TN )T ) = det(I,_1 — T3 i) = 1= [Ty

As matrix (Yy,T7) is unitary, it holds that | T, | + HT v||? = 1. Therefore, we obtain that if x =
on (0% + 67 ), the left handside of (4 is equal to

9 r—1/2
2 5 2 2 2 2 \2 0°CN
- T T ey (67 — O —_—
XN| l,N’ \ l,N| k:;él( LN k,N) <5l2N+020N>
li thus holds for z = ¢y (0? + 512,N) if and only if |T1,N\2 \TLN]Z =0.If ]Tk,N|2 |Tg.n|?> > 0 for each k =

1,...,r, none of the (¢N(0—2+5]%,N))k=1,...,r is a solution of (4.63)). Moroever, as det(Gn (y/x))det(TH* Gy (v/x)T+) #
0 if z does not belong to {(¢n(0? + 62 5), ..., (dn(c? TN)} we obtain that z > z, n is a solution of

(4.63) if and only - ) holds. This completes the proof the Lemma.

In order to simplify the following discussion, we assume that for each k =1,...,r, then |Tk7N|2 ]Tk7N|2 > 0.
Lemma, implies that the eigenvalues of matrix ¥ NE; N2, NE? y that escape from [0,z ,], or equiva-
lently from [0, x4 n], have the same asymptotic behaviour than the image by function ¢y of the solutions of

the equation
' r ~
w—o*(1—cn) 3 Y3 3 T3 _ 1
afey N (w—0) Ry (w0 Xk

that are strictly larger than w4 y. We consider the function fy(w) defined by

U}—O’Q(l—CN) r |T|i : |T|z
Int) = e X — ) i =)~

k=1 kN k=1
. T|?
On each interval o2 + 5k Ny T2+ 5,%“]\,[ (k =1,...,r — 1), functions w — Y ;_, (w—o‘rzﬁ and w —
> et o Jm’“ have each a unique zero. Therefore, f admits 2 zeros on |o —|—5k N 02—{—5,%“ ~ |- Moreover,
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fn converges towards +oo when w — ‘72+5I%,N and when w — 02+5,%+17N. Therefore, foreach k = 1,...,r—1,

the equation fy(w) = - has at least 2 solutions that belong to |o? + 02 \, 02 + 0p i Nl As fy(w) = 0

=
when w — 400, the equation fy(w) = X% has at least 1 solution that belongs to Jo? + 67 5, +oo[. fa(w) <0
N K
if w< 0?1 —ecy)and fy(w) = +oo when w — 02 4+ §2 .. The equation fy(w) = x% has thus at least
’ N
one solution that belongs to Jo%(1 — cn),0? + 0% [ This discussion shows that fy(w) = X% has at least
’ N

2r solutions that belong to Jo2(1 — ¢y ), +oo[. It is moreover easily seen that this equation is a polynomial
equation of order 2r. Therefore, the 2r real roots of fy(w) = X% located in Jo%(1 — cy), +00[ coincide with
N

the set of all roots of the equation. This also implies that fy is strictly increasing on |o?(1 — cn), (53, N+
and strictly decreasing on o2 + 5%’]\,, +o0|. Moreover, on |o? + 5,% N o+ (5,3Jrl ~|, [ is first decreasing, and
then increasing. This discussion leads to the conclusion that s coincides with the number of roots that are
strictly larger than w, n. To connect with the above results, we remark that :

— If 537]\, >wy y—o? ie if Gy(y/Trn) <0, 2r—1roots of fy(w) = é belong to ]637N+0'2, +ool, and

are therefore larger than w, n. It thus holds that s > (2r —1). s = 2r if and only if X% > fn(wg n),
N

and s = 2r — 1 if and only if X%v > . This is of course in accordance with

1
the evaluation of s based on the number of strictly negative eigenvalues of matrix Hy(,/Z+ n).
— If 6%’]\, < win — o2, ie if Gn(y/ZrN) > 0, the (2r — 1) roots of fy(w) = é that are located in
Jo?(1 — cN),(SiN + 0?[ are smallest that wy y. Therefore, s = 0 or s = 1. As fy is decreasing on

]5%N+02,+oo[, s =0 if and only % < fn(wi ), ie if x4 < W, and s = 1if % > m

wi,N)

ie. X?\, < 7 L

as expected.
In the simple case P = 1, it is even possible to precise the value of s when 512+1 Nt o2 < wy N < 512N + 02
for some I = 1,...,7 — 1. The equation fy(w) = X% has 2(Il — 1) + 1 = 2] — 1 solutions belonging to
N
}512]\, + 02, 400[. Therefore, s > 2I — 1. If we denote by wyy < wgy the 2 zeros of function fy located in
1071 + 02,61, + 02[, it is moreover easy to check that :
— if wy vy <wyy, then s =21+ 1 if and only if f(wy n) > X%, and s = 2l otherwise
N
— if wy Ny > way, s =20 if and only if fy(wyn) < X% and s = 2] — 1 otherwise
N
It is also possible to understand how the eigenvalues of X NZ;’ N2, NZ? y that escape from [0, 24 n| behave
when ¢y tends to be very small. As mentioned previously, in the standard asymptotic regime where N — +o0
while M remains fixed, the smallest ML — 1 eigenvalues of ¥, NE;; N2p, NZ}, N converge towards 0, and its
largest eigenvalue has the same behaviour than X%V' When cpy takes small values, this behaviour should be
observed. Assume for example that Gy < 0, and that s = 2r, i.e. that fy(wy n) < x% Then, the 2r — 1
N
smallest solutions of fy(w) = X%, denoted wo v > w3 N ... > war N, belong to Jwy w, (5%N + o2[ while the
N b

largest solution, w; y is located into ]5%’]\, + 02, +00[. The 2r — 1 smallest eigenvalues of Ef7NE;7NEp7NE} N
that escape from [0,z n] behave as the (z; v = ¢n(wi n))i=2,. 2r} and the largest one as 1 v = ¢n (w1 N).
It is clear that z; y < ¢n(0? + 5%’]\,) for 1 =2,...,2r. We recall that ¢ (w) is given by

2 2
2 g O°CN
= 1+
on(w) = enw w— o2 ( w—02>

As (5%N)N21 is assumed to be bounded, it holds that if { = 2,...,2r, 2; v = O(cy) when ¢y — 0. Therefore,
the 2r — 1 smallest eigenvalues of X, NE;, N2, NE}’ y that escape from [0,z n] converge towards 0 at rate
cy when ¢y — 0. In order to evaluate the behaviour of 1 y when cy — 0, we recall that wy y > (5%1\, + 02
satisfies

wyy — (1 = cn) ZT: T3 i ik _ 1

ocN 1 (wi,v —0?) — 5;%,1\/ 1 (wi,v —0?) — 5;%,N XN

2

When ¢y — 0, wy y has clearly to converge towards +oo. Moreover, it is easily seen that wi y ~ ;gé\’N

when ¢y — 0. Therefore, 1 v = ¢n (w1, n) is itself equivalent to X%V as expected. Therefore, when cy takes
small values, the 2r — 1 smallest eigenvalues that escape from [0, x4 n] are O(cn) terms, while the largest
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eigenvalue tends to be close from X?V' The same conclusions hold if G is not negative definite.

We finally conclude this discussion by an even simpler case. We assume that P = K = 1, and that the scalar
state-space sequence (zy,)nez is given by 11 = ax, + by, where a €]0,1[ and b € C. Moroever, u,, is given
by

Up = ONTpi1 = aONTy, + bON Yy, (4.66)

where 0y is a unit norm M—dimensional vector. Therefore, matrices Cy and Dy coincide with vectors afy
and bfx respectively. We also consider the case where L = 1. Model (4.66) fits into the framework of |29].
In this context, matrix Uy y and U, y are given by

Uva = QN (x3,$4, . ,QZN+2), UpJV = 9]\[ ((EQ,.CEg, . ,.TN+1)

|b|?
1—a?’
that r = P = 1. We also mention that in the present case, 2 does not depend on N. Moreover, the empirical
autocovariance matrix Ug nU} v /N coincides with

UpnUp N /N = o n (1) OnOy

The covariance matrix E(uyu}) is of course equal to E(uyu}) = 6% On0% where 62 = E(|z,[?) = SO

where 7y n(1) = + Zivjzl Tp417; is the traditional empirical estimate of E(zni12%) = ad?. Therefore,
the usual r x r matrix 'y is reduced to the scalar 7, x(1), and the associated singular value of I'y is
xn = |fzn(1)]. We notice that 7, (1), and therefore xn, converge towards ad? when N — +oo. As

r = P =1, s may take the values 0,1,2. In the following, we justify that it is possible to find a and b for
which the above 3 possible values of s are possible.

We first find a and b for which s = 2. s = 2 if and only if 6> > wy y — 02 and 1 — x4 fn(we n) > 0, or

equivalently
2 2
wy Ny —o0°(1—cn) 1
142 + 0
N < o’ > <52—(w+,N—02) g

As xn can be arbitrarily close from aé? for N large enough, this last condition can be replaced by

—d%(1 —cn) 1 2
1 — 254 [ YN o*( N
@’ ( O'QCN (52—(11)4_,]\]—0'2) >0

2 olen (wy N — o? 2
a? < 1 - N (4.67)
0261\[ + (w+7N — 02)

or equivalently by

In order to find a €]0, 1] and b for which these conditions hold, we fix 6> > w; y — o2, then choose a €]0,1]
such that (4.67)) holds, and finally select b in such a way that |b|? = 62(1 — a?).

We now produce values of a and b for which s = 1 and 6> > Wy N — o?. For this, it is sufficient to find
a €]0,1[ and 62 > w4 y — o such that

2 2\ 2
1>a>> 5— 2N (1 TN O ) (4.68)
olen + (we N —0?)

G'2CN+(1U+7N70'2)
than 1. Therefore, we consider any 62 > Wy N — o2, select a €]0, 1] verifying (4.68)), and finally choose b such

—o2\2
For each 6% > w4 y — 02, such an a exists because the term SN N a— - u%#) is strictly less
(468
that |b|? = 62(1 — a?).

We now show the existence of (a,b) for which §2 < Wy N — 02 and s = 1. For this, (4.68) has to be verified,
i.e. it must exist % < wi n — o such that

2 _ 2\ 2
1> — g N . <1 _ W) (4.69)
o?cy + (wy N —0?)
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It is easy to check that 62 verifies if and only if 62 is chosen in such a way that

Wy N — 0'2

1+ (O’2CN+’LU+,N70'2 ) 1/2

0’26N

1,U+7N—0'2 >(52 >

We thus choose such a value for 62, choose a for which holds, and finally select b in such a way that
b2 = 6%(1 — a?).

Finally, s = 0 if and only if l|4.6§|) and 6% < Wy N — o2 hold. We simply choose 62 < Wy N — o2, select
a €0, 1[ such that (4.67) holds, and choose b in such a way that [b|* = §2(1 — a?).

We finally illustrate the above discussion by numerical experiments showing that s can indeed by equal to
0,1 or 2. The particular values of a and b are not mentioned. Figures [£.1] [4.2] [£.3| represent histograms of the
eigenvalues of realizations of the matrix X fE;ZpE} as well as the graph of the density gy of measure vy.
Figure corresponds to a choice of a,b for which s = 0, while s = 1 and s = 2 in the context of Figures
and [4.3] respectively.
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FIGURE 4.1 — Histogram of the eigenvalues and graph of gn, s =0
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FIGURE 4.2 — Histogram of the eigenvalues and graph of gy, s =1
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FI1GURE 4.3 — Histogram of the eigenvalues and graph of gy, s = 2
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Chapitre 5

The canonical correlation coefficients
between the past and the future

As we can see from the previous chapter in the high dimensional regime the number of eigenvalues of R f‘pR’}‘p
that escape from the support is a bad estimator for dimension P of the minimal state space representation
. So in this chapter we consider a different approach that is used in order to estimate P.

The canonical correlation coefficients are defined in time series analysis in order to evaluate the relationships
between the past and the future of a given multivariate time series (y,)nez (see e.g. [25]). In this context, we
define the 2 subspaces, denoted ), (the past) and V¢ (the future), as the spaces generated by the components
of y, for n < 0 and the components of y,, for n > 0 respectively. We recall that if (wp, k)r>0 and (wyi)r>0
represent orthonormal bases of ), and )y, the canonical correlation coefficients between the past and the
future of y are defined as the singular values of the infinite matrix with entries E{wy ywy ;}. In the case when
Y has a rational spectrum, the number of non zero canonical correlation coefficients between the past and
the future of (y,,)nez is finite, and coincides with the minimal dimension P of the state-space representations
of y. We refer the reader to [30] for an exhaustive presentation of the related results and their important
implications on questions such as the identification of state space models or on reduction model technics.
See also the concise monography [45]. In a number of practical procedures, )}, and Yy are replaced by the
finite dimensional spaces Y, 1. and Yy 1, generated respectively by the components of y,,n = —(L —1),...,0
and y,,n = 1,...,L for a certain integer L. > P, a condition that implies that the number of non zero
coefficients between ), 1, and Yy 1, is still equal to P. We refer again to [30] for more details on the effects of
the truncation. As the second order statistics of y are very often unknown, the correlation coefficients between
Yp,r and Yy 1, have to be estimated from IV available samples y1, ..., yn. The correlation coefficients between
Yp,r and Yy 1, are usually estimated by the canonical correlation coefficients between the row spaces of Y}, 1,
and Y7y 1, which are define as above, i.e.

a1 Y2 e YN-1 YN
Y2 Y3 e YN YN+1
Y,n=1| : : : : : (5.1)
yr Yr+1 -+ YN+L-2 YN+L-1
and
Yyr+1 Yr+2 --- YN-1+L YN+L
Yyr+2  Yr+3 .- YN+L YN+L+1
Yin=| ° P : : . (5.2)
Yor, Y2r+1 --- YN+4+2L-2 YN42L-1

The above estimation procedure produces reasonably accurate results when the ratio cy = M L/N is small
enough. However, if y is high-dimensional, i.e. if M is large, the condition ¢y << 1 will not be verified as
soon as the number of observations is not unlimited. It is therefore important to evaluate the behaviour of

91



the above estimators when cy is not negligible. In this chapter, we address this problem when ,, is generated
as in Chapter [4] by studying the behaviour of the above estimators in the same high-dimensional regime as in
the previous two chapters, i.e. where L is a fixed integer and where M and N both converge towards infinity
in such a way that

—ML—> 0<ee <1
cN—N Cy, cxe < 1.

The estimated canonical correlation coefficients coincide with the singular values of matrix

CA]%, = (YfY]?‘)_l/QYfY;)*(Y},,Yp*)_l/Q because the rows of (YfYJ;")_l/2Yf and (Y,,Y;)*)_l/sz represent ortho-
normal bases of Y, and Yyr. In the following, we rather study the singular values to the square, or
equivalently the eigenvalues of the ML x ML matrix CA]’%,CA]%,* which are also eigenvalues of N x N matrix
Yp*(YpY;)*)_leYJZ" (YfY;)_lYf up to zeros. Here one can notice that matrices ¥, (Y,Y,") "V, and Yy (Yfo*)_lYf
are projectors and they will be denoted by II, xy and Il respectively.

We mention that a number of previous works addressed the behaviour of canonical correlation coefficients in
the high-dimensional case. However, the underlying random matrix models are simpler than in the present
paper. More specifically, the random matrices Y}, ;, and Y7 1, defined by are replaced by independent
matrices Y7 and Y5 with i.i.d. elements, a property that is not verified by Y), 1, and Yy 1. In 1980, [51] addressed
the case of Gaussian i.i.d. entries and derived the limit distribution of the squared canonical correlation
coefficients between the row spaces of Y7 and Y,. We note that this result appears as a trivial consequence
of more recent free probability theory. More recently, [52] extended this result to the case where Y7 and Y3
are independent matrices with non Gaussian i.i.d. entries. We also note that |53] took benefit of this result
to propose independence tests between 2 sets of i.i.d. high-dimensional samples. We finally mention that [1]
extended the result of |51] to the case where Y7 and Y> have Gaussian i.i.d. entries, but this time E{ Ylj\?(g}
is a non zero low rank matrix.

5.1 With zero signal

This section is dedicated to the case when the signal is absent, so y, = v, and Y}, Y} coincide with V,,, V}
defined from (vy)n=1,.. N+t2r—1. Due to the Gaussianity of the i.i.d. vectors (vy)n>1, it exists i.i.d. Ne(0, Iar)
distributed vectors (vjign)n>1 such that E(viiqnv, ,,) = Iam verifying v, = R}\{Qviidm. It is clear that the row
spaces of V}, and V coincide with the row spaces of the block Hankel matrices Vp,iid and Vy ;;q defined from
vectors (Up, jid)n=1,..,N+21—1. Therefore, the correlation coefficients between the 2 pairs of subspaces coincide,

and there is no restriction to assume that Ry = I in this section.

As before we denote by W), W; the matrices defined by W, = ﬁ% and Wy = ﬁvf, then II, =

Wi (WpW)"'W,, and IIy = W}‘(WfW}k)’IWf. Also we define the 2M L x N matrix

_ Wp,N
W = (Wf,N> ’

its elements (Win})iSQL,jSN,mSM satisfy

!
B{WSWilseh = bitejirtr-

where W/ represents the element which lies on the (m + M (i — 1))-th line and j-th column for 1 <m < M,
1<i<2Land1l<j < N.For each j = 1,...,N,{wj}§y:1,{wp7j}§y:1 and {wﬁj}é\]zl are the column of
matrices W, W), and W; respectively.

It is shown in [32| that the empirical eigenvalue distribution of W; NW;y for i = {p, f} converges towards
the Marcenko-Pastur distribution, and that almost surely, for N greater than a random integer, its eigenva-
lues located in the neighbourhood of [(1 — \/cx)?, (1 4+ /cx)?]. Therefore, almost surely, for N large enough,
matrices WfWJ’c‘ and W,W are invertible. However, considered as functions of the entries of Wy and W),
(WyW3 )=t and (W,W;)~! are not differentiable everywhere. As we use in the following the Nash-Poincaré
inequality as well as the integration by parts formula, we introduce a regularization term 7y that avoids any
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technical problems.

In this chapter we slightly change already introduced notation, that is, we will say that function fy(z) =
O.(ay) if z belongs to a domain © C C and there exist two nice polynomials P; and P, such that

In(z) < aNP1(|z|)P2(ﬁ) for each z € Q, where p(z) = dist(z,RT). If Q = C\ R", we will just write

fn(2) = O.(an) without mentioning the domain, and for any K x K matrix A(z), by A(z) = OX(ay) we
mean that each element of A(z) is O,(ay). Finally, we will use a lot the notation fx(z) = O,2(an) without
mentioning the domain, which will mean that 22 € C\R™, or equivalently, that z € C\R. We notice that if Py,
P, and @1, Q2 are nice polynomials, then P1(|z\)P2(ﬁ) + Q1(|z|)Q2($) < (PL+Q1)(z]) (P2 + Qg)(ﬁ),
from which we conclude that if functions f; and f2 are O,(«) then also fi(2) + fa(z) = Oz («).

5.1.1 Preliminary results

In this subsection we present some useful results concerning our model.

5.1.1.1 Regularization term

This part is dedicated to regularization term and its properties that will help us in further calculations. We
define it as

v = det [y W )ldet [6(W;, ¥ W5 0)], (53)

where ¢ is a smooth function such that

o = J Lo AE (1= V) —d, [(1+ @)+l
0, for A € [—o0, (1 — \/a)Q —2e]U(1+ \/&)2 + 2, 4]

and ¢(A) € (0, 1) elsewhere. Taking into account the almost sure behaviour of the eigenvalues of matrices
WpWy and WyW73, ny =1 a.s. for each N larger than a random integer and

It

AW Ty < . 4
(W%NWI,N) NN > (1 _ \/a)Q — % (5 )
We first mention the following useful property.
Lemma 5.1. For each I,k € N it holds that
1
E{ny}=1+0 <Nk> (5.5)

Proof. Denote
En = {one of the eigenvalues of W, W, or W W} escapes from the [(1 — Ven)? =), [(1+ e)? + €]}

and define another smooth function ¢g as

sy [0 for e [0 =y, [0+ )
0 1, for A€ [—o00, (1—/G)? —  U[(1+/&)? + €, +00]

and ¢g(A) € (0, 1) elsewhere. Then we have

P(EN) < P (Troo(W,177) 2 1) < B { (Teao(9,7)) }

for all £ € N. In order to evaluate E{(T‘rqﬁo(WpW;))zk} one can use the same steps as in the proof of
Lemma 3.2 [33] and get immediately

E{ (Tego (W, ;)" } = 0 (1\[12%)
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with P(Ex) = O (ﬁ) for each k. To show 1} we write

By — 12 = [E{(rx — D+ + 15D} < E{(rx — DIE{( + ... +15)?)
< KE{(nn — 1)*1¢g,}
because ny —1 = 0 on &fF. Also since by definition ¢(A\) € [0,1] we conclude that 0 < ny < 1 and
0 < (g — 1)? < 1. This allows us to write that kKE{(ny — 1)?1¢, } < kE{1g,} = kP(En) = O ( 1 ) and

N2k
so complete the proof. B

This Lemma permits us to write that E{F} = E{n},F} + O(N~*), where F is bounded. Indeed, after
applying Schwartz inequality we obtain the familiar term :

Bl — DFY < B{0 - i PIE (1P} =1 =200+ 0 (5 ) +1+0 (2 )1 = 0 ()

Finally, since we use integration by parts formula and Poincaré-Nash inequality, the partial derivatives of n
with respect to elements of W),, W; will appear and the next lemma is needed.

Lemma 5.2. Let ) be the event defined by :

Q = En N{all eigenvalues of W,W, and WyW; € Supp(¢)}. (5.6)
Then it holds that
onn
= Q¢ .
oW 0 on (5.7)
and
2
onn

E

1
oo} o (t) o
oW NF

forall1<m<M,1<i<2L,1<j<N and each k.

The proof of the lemma is an adaptation of Lemma 11 and calculations from Proposition 4 of [19]

5.1.1.2 Linearisation

From what above we can conclude that for N large enough, nyIl; y = II; y almost surely and from that,
in order to evaluate the almost sure behaviour of the resolvent of II, yIIy x, it is sufficient to study the
behaviour of the respective resolvent Qu(z) defined by

Qn(z) = (NI nnnTlyy — 21) 7"

As the direct study of Qn(z) is not obvious, we rather use the well known linearisation trick and introduce
the resolvent Qu(z) of the 2N x 2N block matrix

0 nnII N)
My = PN
N (UNHLN 0

It is known that Qun(z) can be expressed as

v NQN(2?) 2Qn(2%)

where Q ~N(z) is the resolvent of matrix nyIl nnnIL, n. As shown below, it is rather easy to evaluate the
asymptotic behaviour of Qu(z) using the Poincaré-Nash inequality and the integration by part formula (see
Propositions and [2.2). Formula (5.9)) will then provide all the necessary information on Qn(z).

2Qn(2?) QN (z*) Tl N ) (5.9)

Qn(z) = <

Since Qn(z) and Qn(z) are resolvents of non Hermitian matrices, the usual bounds ||Qn(2)| < == and

Imz
QN (2)|] < 12 are not necessary valid. Thus a more specific control is needed.
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Lemma 5.3. If Imz # 0 (i.e. 22 € C\RT), then |Q(2)| = O,2(1).

Proof. In order to bound ||Q]| it is sufficient to bound each of its blocks : Qpp, Qpf, Qs and Qg,. We will
start with Qp¢. For this we use expression 1) for Qps, the fact that IL, = H129 and that (AB —z)7'A =
A(BA — z)7! for any matrices A, B. Then,

Qpr = (NI — 2%) "IN 1L, = naIL, (R I IIT, — 2%) ML,

Here (n3IL,I1/II, — 22)~! is the resolvent of a positive Hermitian matrix, from what follow that its norm
can be bounded by (p(2?))~!. Since ||IL,|| <1 and ny < 1, we have

1Qptl < p ! (5.10)

(2%)
Analogues for Qg, we have :
Qsp = NI (T IT; — 2%) ™ =TT (R T I — 2%) 7', (5.11)

from what we will have the same bound for Qg,. To deal with Qpp we use again (5.9) and resolvent identity.
Thus, we have

_ 1 _ 1
Qop = 2RI, TTy — 22)7" = =~ (I + I (R T T = 22) 1) = =~ (Iy + v TL,Qgp)

Obviously || In + 7y, Qgp | < 14 5. To show that |2~!| < P(p(2?)) for some nice polynomial P, we write

p(z?)
L< 1 <1+ L <<1+ ! >2 (5.12)
212 7 p(2%) 7 p(z?) T p(z) '
This brings us to the conclusion that ||Qpp|| = O.2(1) and so for Qg. This finishes the proof of the Lemma.

Remark 5.1. [t is worth to remark that in the course of the proof we basically get that iOzz(l) 15 still

E
0.2(1) and since |2| < 3(1+ |2]?) we can also say that |2|0,2(1) = O,2(1).

Corollary 5.1. N‘lTerf and N_l’Hpr coincide with the value taken by the Stieltjes transforms evaluated
at 22 of some positive measures carried by RY, moreover E{N 1TrQp¢} and E{N'TrQg,} also coincide
with the value taken by the Stieltjes transforms evaluated at z* of some positive measures carried by Rt and
of total mass cy + O(N~F) for each k € N.

Proof. It is obvious that N~ Tr(n3 IL,I1I1, — 2)~! is the Stieltjes transforms of some positive probability
measure carried by RT and as a consequence we can easily obtain that function N _lTrnNHp(nJQVHpH I, —
z)7MHI,, is also the Stieltjes transforms of a positive measure carried by RT of total mass N *1Tr77NH]23 =
N~1TryyIL,. But in the Lemma we proved that Qpe = nnIL,(n3 11,11 (1T, — 22) ~II,. This gives us immedia-
tely the statement of the Lemma. Moreover we can notice that N 'E{TrQp¢} and N 'E{TrQs,} are also
the Stieltjes transforms and the total mass of corresponding measures is N 'E{TrnyIl,} = ey + O(NF)
for any k € N. B

Analogous to the two previous chapters, in the following, every 2N x 2N matrix G will be written as

Gpp G
G= (GI: GI?) : (5.13)

where the 4 matrices (Gy ;)i jep,r are N x N. Sometimes, the blocks will be denoted G(pp), G(pf), -...
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5.1.1.3 Properties based on the invariance of the complex Gaussian distribution

Lemma 5.4. The matriz E{nn(W;W;})~'} is block diagonal and matrices E{nn1L}, E{Qs}, E{nnI1,Qi;}
and E{nnQuW; (W ,W)"2W},} are diagonal, fori,j,h = {p, f}. Moreover, if i, j,h = {p, f}

TYE{Qy} = TIE{Qg), (5.14)
TrE{nn11,Q55} = TrE{nn1L; Qg}, (5.15)

” changes index to opposite : p — f, f — p.

[12ad

where

Proof. To prove that all E{Qj;} are diagonal we consider the new set of vectors z;, = e~ "9y, and construct
the matrices Z,, Z¢ in the same way as Y}, and Y;. It is clear that sequence (zy,)nez has the same probability

distribution that (y,)nez. Zp and Z; can be expressed as

e Oy ... 0 1 ... 0
Zy = : : ol @ - : :
0 oe Lo, 0 ... e W-Dib
e Oy ... 0 1 ... 0
Zy=e M0l Yy :
0 ooe bty 0 ... e WV-1)ib
Then
e_iQIM - 0 ewIM ... 0
Z;Z7 = : : 1O 7l I : , (5.16)
0 ..oe o, 0 .oelfry,
e Oy ... 0 eIy ... 0
(Z:zf) ™ = S : Yyt o o (5.17)
0 e_LwIM 0 eLwIM

so for the corresponding functions ¢(ZyZ7) = ¢(Y;Y}) and ¢(Z,Z;) = ¢(Y,Y,). This imply that new
regularization term 7* = det ¢(Z,Z,)det <Z>(ZfZ;§) will remain the same, i.e. n* = 7). Next we define II7 =
Z¥(Z;Z3) "1 Z;, i = {p, f} it holds that

m=\: - : ;|2 - : (5.18)

—zImr n*l
n*I; —zlnmr

s = (4 4)E@ (G 4,

1 ... 0

~1
for i = {p, f}. Similarly to Q we define matrix Q% = ( ) and obtain immediately that

where N x N matrix A defined as

A=|: -, :
0 ... eN-Dif

Obviously for each N x N block E{Qj;*}, 4,5 = {p, f}, we have

1 ... 0 1 ... 0
E{Qi* =11 - : E{Q;}

0 ... e(N-D 0 ... (N1
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and as consequence

E{nnI Qi =+ - : E{nnInQs) | 1 . : ,
0 ... eN-1)i# 0 ... e (N-1)i#

for h = {p, f}. Since E{Q%} = E{Q}, for every element ]E{Qijk’l} with 1 < k,l < N and i,5,h = {p, f} it
holds

E{Qijk,l} _ e(k—l)i@]E{Qijk:,l}e—(l—l)ie — e(k—l)iaE{Qijk,l}
E{nn (1,Qy)"} = e* VPR {ny (11,Qy) ' te 17V = e=DOR fn(11,Qy)"'}

This proves that E{Q;;"'} = 0 and E{ny(I1,Q;;)*'} = 0 if k # [, as expected. Analogous we can prove the
same results for E{ny (W;W;})"1}, E{nnIL;} and E{nn Qi W;(WrW;)2W}} from (5.17) and (5.18).

To prove (|5.14)) let us consider sequence z defined by z, = y_p4+ny2r for each n. Again, the distribution of
zn, will remain the same and it is easy to see that for ¢ € {p, f} Z; can be found as

0 Iy 0 1
Iy 0 1 0
and as consequence
0 .. IM 0 IM
ZiZy = | ¢ DAl B :
Iny ... O Iy ... O

Here one can see that Z;Z; is a unitary transformation of Y;YZ*, so both matrices has the same eigenvalues,

which means that ¢(Z; Z;) = ¢(¥;Y;"). This imply that new regularization term n* = det ¢(Z,Z;)det ¢(Z;Z})

will remain the same, i.e. n* = n. Next we find corresponding expressions for H;j f and QZ. It is easy to see
0 ... 1

that II7 = AllyA and II5 = AIl,A, where this time A = | : © | is a N x N matrix. From this, we

obtain that
-1
A O —z1 II A 0
Zy _ N iy
st =5 o) ={ (G 22) 16 5):
Using the formula for inverse block matrices and fact that E{QZ} = E{Q}, we obtain that E{Qpp} =
AE{Qg} A and E{Qp¢} = AE{Q¢p } A. This immediately implies that for every 1 < k < N and h,i,j = {p, f}

we have E{(Qy)""} = E{(Qp)" """ N*17*} and E{ny (I,Qy)"*} = E{ny(I[;Qp) N1 -HN+1-F} As
consequence E{TrQy;} = E{TrQgz} and E{nn11,Qy;} = E{nn11;Qg} as expected. W

Previous Lemma gives us that matrices E{ny (W; W)™} and E{nyIL;} are diagonal, in the next Lemma we
will prove that they are actually a multiple of identity matrix up to an error term.

Lemma 5.5. Fori = {p, f}, we have :

1 1
E WA = I ML 1
{ov(W;W) "} 1—cn mr+ O (N3/2> (5.19)
1
E{nyIL;} = enIn + OV <N3/2> : (5.20)

Moreover, (ML) *TYE{nny(W;W)™1} = (1 —eny)~t + O(ﬁ)
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Proof. We consider ¢ = p, obviously for ¢ = f the proof is analogous. In the following we drop index ¢ and
denote G = (WW*)*I. To prove this lemma we will use the integration by parts formula (Proposition

M1ms Yy ma ms
for nNquz W127]2I/Vj17i3 ‘

E{nn G2 W Wi b= > E{W Wi}

1122 22,]2 J1,23 J1,23
m’ il 5!

- (E{awm’ Gz Wiy Jz} HE{ N i Wisse ¢ TE NG (5.21)
Z/,j/ i/,j/ i/7j/

Lemma implies that the first term of r.h.s of (5.21)) is of order O(N~F) for each k. Indeed,

onn onn
E { awm’ G;?Zl;nz WZ:?Q} =K {1 awm’ GZ711112m2 WZ?32
Zl, / A

and Schwartz inequality leads to

2
onn onn
- {1Q 8W7/n / GZL;:W ZT;Q } ‘ =" | 8Wzmjl"

o {oprws

2112 22,72

2} (5.22)

On event (2 all eigenvalues of WW* belong to ((1 — \/cx)? — 2¢, (1 + /cx)? + 2€), so |Glq]| and |[W1lg||

are bounded, therefore we have immediately that ‘1QGZT;2m2 W[:jQ’ is bounded by some nice constant. Then,

after some calculations | - ) becomes

1
m1m2”7m2 ”77713 — ) s
E{UNGMQ i2,j2 ' j1,934 T N § : 5m/7m3513+]172l+]/

m’ il
m m * m m mim 1
X ( { Gllzl/ (W G)] 222 W’LQ 32} + E{nNGllzlg 26m m2612 i'Oja,5’ }) + O <Nk> (523)

Defining | = i3 — i’ = j' — j; which changes from —L + 1 to L — 1 and taking into account ([2.3) we get

Ot g Oig g1 7457 = (Jg) ® IM)ZZ/;”?’ (J](\l[))jlj/. Then, after summing over ¢/, 5/ and m’, (5.23) becomes

1m2 2 3 —_
E{nnGTim2 W2 s} = N]E{ (G(J ® Iy ))

mims3

1112 22 J2 ]1713 J1,22 12,]2

(TOwgyrz wim }

1113
+ lE{ Gmlmz (J(l) ® I )m2m3( ) } + O L
N N 1112 L M 1213 J1j2 Nk

and again, this time summing both sides over i9, mg :

L-1
m 1 l m l
E{nn (@W)L W} = -~ > E{aw(GUL @ L) (75,5 |
=—(L-1)
L (0 0 !
tx 2 E{w@ul e ng oy s} +0 (5 ) - 621

At this point in order to prove (5.19) we take jo = j; and sum over this index, then, since GWW™* = Iy,
we have

L-1 L-1

l 1 ! I 1 ! 1
E{fgn}yr=—- Y E {nNG(Jé) ® IM)NTr(J}V’H)} + Y E {nNG(Jé) ® IM)NTrJ}V)} +0 (Nk>
I=—(L—1) I=—(L—1)
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Obviously %TrJ ](\l,) is equal to 0 for [ # 0 and to 1 if I = 0 and as was discussed above we can replace E{ny}
by 1 on the Lh.s. while adding term O(N~*) and ny by 73 on the r.h.s. Then

L-1

L-1
1 1
==Y E{wGUeL)}E {NTr(TINJ](\?H)}— Y E {nNG(JS) ® IM)NTI(WNJ](\I,)H)O}
I=—(L-1) I=—(L-1)

+E{nnG} + O <z\}k> (5.25)

1
Lemma implies that E{nyII} is diagonal, so E {NTr(nNJJ(\?H)} = 0 for all [ # 0 and moreover since
+TrIl = ¢y it is easy to see that E{ & Tr(nyI)} = cy + O(N~F) for each k. Then from the last equation

we derive immediately the expression for E{nyG} :

L—-1

1 1 1 1
E{my(WW) '} = ——lur+1— > E {UNG(JS) ® IM)NTr(nNJ](\l,)H)O} +0 <Nk> (5.26)
I=—(L—1)

Finally, we show that each element of matrix ) E {UNG(JS) ® IM)%Tr(J](\Z,) (UNH)O)} is of order O(N~3/2),
for this we apply Schwartz inequality :

1 1 1/2
’E {(fgl)*nNG(JS’ ® IM)fgzNTr(nNJ](\l,)HO)H < (Var ((fﬁ“)*nNG(Jg) ® IM)f;;2) Var <NTr(nNJ§V”n)>>

In order to evaluate variances one should follow the steps of the proof of Proposition 3.1 [32]. In [32], matrix
nG is replaced by the resolvent of WW* evaluated at z € CT. The proof of Proposition 3.1 [32] uses the
fact that the norm of this resolvent is bounded by @, a result that is of course not true in the present
context. However, the above upper bound is replaced by nyG < kIy (see ) This allows to obtain the
same estimations as in Proposition 3.1 [32] :

1
Var ((fg“)*nNG(Jg) ® IM)ng) ~0 ()

o(k)

1 ! 1

1
Var (NTr(nNJ](\l,)H)>

and conclude ((5.19)).
To estimate the expectation of (ML)~ Trnn(WW*)~! we take a normalized trace from both sides of ((5.26))

and use again the Schwartz inequality for an error term :

1 1 1 Drro 1 l 1 l 1/2
‘E {mTr(nNG(J( ) ® IM))NTr(nNJ](V)H )H < (Var (MLTmNG(Jg) ® IM)) Var (NTr(nNJ](V)H))>

1
-9 (w)
Then we get immediately (ML) TrE{ny (W;W;) ™'} = (1 — en) ™ + O(3z).
Finally, to prove (5.20)) we return to equation (5.24]) but this time we take m; = mg, i; = i3 and sum both
sides over these indexes :

ity ==ev Zﬁ ) { TN ® IM)>(J§V”H)}

1 1



Analogous to what we have seen above, we replace ny by 77]2\, in the first term of r.h.s. and remark that
E{Tr(nNG(Jg) ® Ip))} = 0 for all I # 0, since E{nyG} is block diagonal, moreover E{(M L)~ !Tr(nyG)} =
(1—cn)~t+ (9(#), then after trivial algebra we get

L-1

1 I o, 1l
E{nyII} = enIy + O <N2> + l_%:_l)IE {MLTr(nNG(Jé) @ Inr)) nNJ](V)H}

Like in previous case, with Schwartz inequality we obtain the necessary error terms.

5.1.2 Expression of matrix E{Q} obtained using the integration by parts formula

Now we return to the expression of Q(z). Using the resolvent identity we have
0 nll Qpe(2)nlly  Qpp(2)nll
2Q(z) = —ILy + Q(z p)z—[ —i—(p PP L 5.27
Q) = ~fav +Q0a) (g ") =t (L Geele i (5.27)

The goal will be to express all four blocks of r.h.s. in terms of Q(z) with help of integration by parts formula,
Proposition We start with Qpp(2)n1l,.

L

N M
E{(Qppnnp)rs} = Z Z Z E{ panpn?Lit ((WPW;)_l):;;nZ p,ms} ZE{WﬁithTi

t=1 i1,i2=1m1,mo=1

o (Qpon (W) ) )Y o
2112 pi2s . rt *\—1\mimz D,i28
<2 ol b= S Qi (053517 i
o (Wpwp)=t)mm oQrt B
111 m *\—1\m1im m n *\—1)M1m m
+Qpp77 an;,» = Wp 'LZs_‘_ang n ((Wpr) )i12'12 ’ D, 1§3+Qpp 8Wm3 ((WPWp) )1'17;12 ’ Wp,iis
i3U 13U 13U
(5.28)

Here we take derivative with respect to each element of W, so index i3 takes values from 1 to 2L. We are going
to denote each term of r.h.s. without expectation by 17, 15, T3, T4 respectively and treat them separately.
First one is obvious

1 r x\—1\m1m aWn?s mim
T = N Z(Sml,mgéil-&-t,irri—qutpn ((WPWIJ) 1)1‘1%'12 : 8”2?} B N Z 6m1’m2 i1+t 12"'5(;2131'-’77 ((W W ) )11212 ’
We define a new index [ = i; — i3 which obviously takes values from {—(L —1,...,L — 1)}, then we can

rewrite 8, 44 ints = Oiy—ig 10s—t1 = (J](\?)iQil(J](\l,))ts and taking into account 1) we obtain

mima2 1 *\ —
T = = S ) @ T2 Qpon (W, W) ™) 0 = Z (Qeo /i) T (1) © Ldm(w,w;) ™)

1
N 1112
—(L-1)
(5.29)

Now we take an expectation and rewrite

sny - S B (Qua) VLE{n (U0 & nunmm ) )
l—f<f>

r 3 ] (@), 7T (G e nnonr) ) )

—(L—-1)

In the obtained equation we denote the second term of r.h.s by T¢. According to l} E{(ML)_lTrn(WpW;)_l} =
ﬁ + (9(%), it means that if [ = 0 we have

1 *\— CN 1
NE{TT(W(Wpr) h} = A=) +0 <>
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and if [ # 0 then from Lemma we have %E{Tr ((Jg) ® IM)n(WpW];‘)_l) } = 0. Since resolvent is
bounded (see Lemma , the only term which gives impact appears when [ = 0 and

1
E{T}} = CN IE:{ (Qpp),. } + 0,2 (2> + Tf. (5.30)
—CN N
For second term we have

Th=—— Z 5m1,m3 i1+t z3+qupn ((W W*) )mlmd (W*(W W*) ) WIZZS

Ui
Here we take | = iy — i3 and again —(L —1) <1 < L —1, then 8 44540 = 0iy—iz 10u—t1 = (J](\?)isil(J](\l,))tu.
This gives us

L-1

I =— Z (nQppJJ(\lf)Hp)

I=—(L—1)

%Tr (7 & Dy w,wy) ™) (5.31)

rs

Taking the expectation and replacing n by n?, we have

E{Tp} = — Lz_l E{ (nQppJ](\l,)Hp>rs }%E{Tr (n(JS) ®IM)(W,,W5)*1> }
I=—(L-1)
L—1

- X B (1Quam,) e (0 @ D)) 4 0a ()

I=—(L-1)

Analogues to previous case, in the last equation we denote the second term of r.h.s. by ng and notice that in
the first term, according to Lemma all terms except of when | = 0 are zeros, and E{ (ML)_lTrn(WpW;)_l} =
(%), then

CN £ 1
E{TQ} = — 1_ CNE{ (nQpPHP)Ts } + T2 + OZZ (]\ﬂ) (532)
To deal with third term, T3, we first should find the derivatives of resolvent. For this we write

0Q = —-Qd ( 0 77Hp> Q=— (pra(nnf)Qpp + Qppd(ll,) Qsp Qprd(nlly)Qpr + Qppa(ﬁnp)QfF>
77Hf 0 Qﬁ'a(nﬂf)Qpp + pra(ﬁﬂp)pr Qﬁ'a(nﬂf)pr + pra(ﬁﬂp)fo
(5.33)

Now we take a derivative with respect to the element W;'?. As was discussed before, since ||Q|| and [T, ||

81/?/7”3 can be bounded by

i3u

are bounded (see Lemma , the expectation of the terms that correspond to

any power of N1 This justifies that we can put all this terms together and denote result general matrix
by & for which E{} = O,2(N~F) for any k, more precisely it will be discussed in Section Finally we

recall the classic formula for the derivative of projector II, (for II; the formula is analogues)

OTI, =TI S (W W, ) (W W) + (W W) # 5 (W W) TT; (5.34)

P
where (W, W,)# is the pseudoinverse of W, W), and in this case is equal to W (W, W) )~2W,. Since we are
taking the derivative with respect to the Wl’?j, formula lb can be simplified, more precisely :

vy =

3U

T W B e, W (W W) 2 W+ Wy (W, W) 20, W e, T ) iy

P i3 P 13

Here fg”3 is the basis vector of RML, obviously if i3 > L the derivative is 0. Also since H]J;W; = 0 the first
term is disappear and finally we have

oll,
ow,/ns

i3U

= W (W W)~ el Ly <
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For II¢ the formula is absolutely analogous, but instead of f;* we will have fgl?’ I
o1l * ®\— *
8W£3 Wi (WiW5) lff:fLequlipL
13U

Putting these expression in (5.33) we have

o9 = -nl;<r (Qpp(W;(WPW*) 1fzmse*HLpr Qpp(W;(W W*) 1fzmge*HéQﬂ‘>
Wi =\ Qi (W (W W) 1fZ?3 *HLpr Qo (W5 (W), W*) e 1 Qg

Qpe (W (WyW7)~ 1fm3LeuHJ_QPP Qupe (W} (W W)™ eI Qpe

—nl; / &} y (&4 +& (5.35
s>t <QH(Wf(Wfo) 't 3LeuH Qpp Qe(Wi(WyWj)~ 1f33LeuHJ_pr> (5:35)

Now we are ready to deal with term T3, firs we sum over 9, mo :

T5 = Z(Sml,ms i1+t,iz+ul] (QppW*(W W*) ) ( Lpr) ((WPW;)_lwp)Z; 1i3§L

_Nzcsml,mgaiﬁmwn (QueW (W) ™)™ (H;Qpp) (W) W,) " Lipsp + € (5.36)

ris—L

Then for first term of obtained r.h.s. we again define [ = i; — i3, since i3 < L index [ € {—(L—1),...,L—1}
and 0,4t is+u = 0iy—ig 10u—t] = (Jg))isil (JJ(\I,))tu. In the second term we first change the variable i3 i3 — is+ L,
then new i3 runs from 1 to L and the term itself becomes

1 * *\ — *
N Z 5m1,m35i1+t,i3+L+u772(prWf (Wfo) )T"Lg (Hf Qpp)ut((W W ) 'w, ) lis<r.

Now as just above we denote | = iy — i3, then 6;, 44 i+ L+u = 0iy—ig 10u—ti—1 = (Jé))zw1 (J(l L))tu. That gives
us, after summing over i3, j3, ms and t, u :

* *\ — l *\ — 1 l
== > 7 (QuW;(WW) () © L)W W)W, ) T (I Qep )
I=—(L—1)
S ] =1 7O =1 ! 1o gD
= Y R (QuWE W) Y @ D) W) W) T (T Qpp )
I=(L—1)
Taking an expectation and rewriting, we get
L-1
* *\— l *\ — 1 l
Bt =— Y E{n(QueW; W)U © LW wy) W) B{ T (nQea) }
I=—(L—1)
L-1
* *\— l *\— 1 I-L
= > E{n(Quewi w0 @ L Wow) T w,) HE{ T (nil Qupy ) |
I=—(L—-1)

+ E{&} + T%,

where, as above, T§ is the term corresponding to (nQpp S (WpWy)~ (Jg) ®IM)(WPW;)*1WP>O and
(nprW}‘(WfW;)*l(J(l) © Ing) (W W)~ W, ) . According to Lemma 5.4, E{nIL} Qg} and E{nIT}Qpp}

are diagonal, it means that traces of these matrices multiplied by Jy ®) for k # 0 are zeros. Then
* *\— 1
E{Ts} = —E{n (QupW; (W, W;)2W,),, }E{Tr (nll;Qep) } +E{€} +T5. (5.37)

81/?/’"3 so as before, since E{|Qpp" (W,W}) 1o} is bounded, we

z3u

can conclude that E{T}} is of order O,2(N~F) for each k, and thus can be considered as the term E{Ex}.

Finally, the term T4 again consist factor
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Now we define N x N matrix App containing the error terms, i.e. with elements A, (pp) = B{Tf + T5 +
T + E{E} + O(5=)}, without taking into consideration factor (1 — cy), and by combining (5.30), (5.32)),
(5.37) we get that E{QppnIl,} becomes

Q) = 125} -2 20
= E{nQppW;(WpW;fQWp}%E{Tr (" Qep) } + App
From what immediately follows
E{Qppnnp} — cNE{Qpp} (1- cN)E{nQppwg(prg)*QWp}%E{Tr (nH;pr> } +App  (5.38)

Repeating step by step the above calculations we can get the analogous formula for E{Qp¢nIl,} :

E{Qpenll,} = CNE{pr} (- cN)E{nQppW;(WpW;)_QWp}%E{Tr (nH;fo) } +Apr (5.39)

Lemma 5.6. The matrices App and Aps are diagonal and fori=1,..., N
1
Aii(pp) = 0.2 N2 (5.40)
1
Aii(pf) = O,z (]\73/2> (5.41)

moreover, N"'TrApp = O0,2(N72) and N~'TrApe = O,2(N2).

Proof. Due to the Lemma all terms of equations (5.38) and (5.39) except of App and Apf are diagonal,
what brings that App and Aps are also diagonal. The evaluation part is postponed to the Section

On the other side, we recall that Qpr = Q(22)n1IL, (see (5.9)), from what follows that QpenIl, = nQp¢. Then
equation (|5.39)) becomes

B{Qur} + 0. (7 ) = exE{Qur} (1= ex B {0 Qe W (W05, } 2 {1 (1Qa) |+ Ape.
(5.42)

Now we express Qﬁ‘?’]HIJ; using 1) and resolvent identity
_ 1 1 _ 1
Qelly = 2(nT; 1L, — 2%)~'ll, = 2 <—z2nﬂé + 5 (0TI, — 22) " T I, ) ==l (543)

We remind that N~VIrIL, = ¢y from what we get immediately E{NflTeranj;} = —(1_2701\’) + (’)(ﬁ) for
each k. This allows us to obtain expression for E{nQppW;‘ (WpWy )_QWP} from ([5.42)) :

z z

1
B{Qur) + = ot + E{rQue W (W17, 0 (2.

* *\—2 o
E{UQppr(Wpr> Wp} T 1 cn
Let us rewrite 2Qpe as nQppll, ( see (5.9)) and notice that [[nQppWy(WpW;) 2Wy|l = O,2(1) (see
Lemmal5.3|and the fact that |pW,||, [|n(W,W;)~!|| < k). Thus, each element ofE{nQppW;(WpW;)*QWp}Ozz(ﬁ)
is O0,2(x) and the last expression becomes

1

E{nQppW;(WpW;rQWp} = ——E{nQppll,} +

1
N( L
[ en Apr + O (N’f) : (5.44)

(1—cn)?
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By putting this into (5.38)), after some easy calculations we get :
E{UQppHp} (1 + N_lE{Tr(nHj,‘pr)}> = CNE{Qpp} - N_lE{Tr(nﬂﬁprﬂ

1
(2 dwr 0 (1)) om0

Since N 'E{Tr(nIL}; Qgp)} = N 'E{Tr(nIl; QgplLy-)} and as was discussed in CorollaryN_lE{Tr(pr)}

is a Stieltjes transform at 22 of some positive measure, we have that N_lE{Tr(nHzJ;pr)} is also a Stieltjes
-1

transform at 2% of some positive measure. In particular it means that N 'E{Tr(nIl}; Qg )} < x(p(2%)) " and

as consequence N _IE{Tr(nHIfop)} = O0,2(1). Thus 1) becomes

E{nQppll,} (1+ N E{Tr(nl; Qep)}) = evE{Qpp} + Oua(1) (At + App) + O (zék >

We take normalized trace from both sides of obtained equation and notice that due to the Lemma [5.6| both,
N1TrApp and N71TrA ¢, are of order O,2(N %)

1 _ c 1
SE(TnQpplly} (1+ N E{Te(nTi Qep)}) = SE{TrQpp} + O 15 (5.46)
N N N
Finally, to complete this paragraph, we denote
- 1 1
ay = NE{Terp} = NE{TTQH} (5.47)
1 1
ay = N]E{TI'pr} = N]E{Terp} (5.48)

and express N 'E{Tr(nIl; Qg)}, N 'E{TrnQppll,} in terms of é&. For this we use again the fact that
Qp = 77Hf(772ﬂpﬂf - 2:2)_1 and write

N'E{Tr(nIL, Qep)} = N 'E{Tr(nQgp)} — N E{Te(n’ILIL; ("I, 1T; — 2%) 1)}
=oa—1-2zN"'B{Tr(Qpp)} + O.2 <]\1k> =a—-1—-za+ 0, <]\}k> (5.49)

To deal with N 'E{TrnQppll,} we simply remind that nQppll, = 2Qp¢. Now what is left is to find the
connection between o« and &. We have

1 1 _ 1
NTYUH}_Qpp = NTF (nQpp - nNHfZ(UZHpr - 22) 1) = NTr (1Qpp — 2Qfp)

Taking the expectation from both sides and replacing in the first term n by 1 we get
1 n - 1
NE{nTer Qpp} =a—za+ 0,2 NF (5.50)

for each k.
On the other hand, using |) resolvent identity and the fact that II fHJ- =0 we get

1

1 1 1 _ 1
NTr”NHJ%Qpp =1 < <—22 + ?(UJQVHpr — 27 17712\/Hpr> TINHJ%> = _WTI'UNH}_

N

since N~ITrIl t = cn, we conclude immediately

1 . 1-cy 1
ﬁE{nNTer Qpp} = — P o <Nk> (5.51)

Compare the last expression to (5.50|) we finally obtain after trivial algebra

an(z) = dNZ (2) 1 S 40 <N1k> (5.52)
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Since, in (5.46) 7Qppll, = 2Qp¢, by combining it with (5.52) and (5.49) we obtain the equation for & :

(1-2%)a% + (2(1;“)—:0 dN+(1_Z§N)2_O <]$2> (5.53)

Also if we denote an(z) = N'E{TrQn(2)} and an(z) = NTE{Tryll,Qn(2)}, then an(z) = zan(z?)

and ay(z) = ay(z?). The respective equation for ay(z) will be

(1—2%)22a% (2%) + (2(1 —en) = 2%) an (%) + (1zQN) =0x (1\12> '

The Lh.s of obtained equation is the function of 22, thus the error term of r.h.s is also necessary a function
of 22. By exchanging z? with z we have
1—cn)? 1
(1 — 2)za%(2) + (2(1 — en) — 2) an(z) + (ZCJV) =0, <N2> (5.54)

Moreover, from (5.52)) in the similar way one can easily deduce the corresponding expression on &y (z) and
an(z) :

an(2) = an(z) + - — 1o, (vak> . (5.55)

Remark 5.2. It is easy to see that due to Corollary [5.1) ay is a Stieltjes transform of a positive measure
carried by RY with mass cy + O,(NF). Since —17% is a Stieltjes transform of measure (1 — cn)dp, we
conclude that an(z) = an(z) — 1_% + 0O, (N*k) is a Stieltjes transform of a positive probability measure
carried by RY up to a term O,(N~F) for each k € N.

Finally, we prove here a useful Proposition.
Proposition 5.1. Matrices E{Qj;}, E{Qq;nIly} for i, j,k € {p, f} are multiple of In up to an error term.

Proof. For the beginning we deal with E{Qpp}. Before we obtain an equation (5.45) which along with
Lemma gives :

1
E{nQpplL,} (1 + N_lE{Tr(nH,fop)}) = eNE{Qpp} + O (Ng/g>

Since E{nQppll,} = 2E{Qp¢}, last equation becomes

ZE{nQpt} (1 + N—lE{T&«(nH;pr)}) = cnyE{Qpp} + OX (A;/Q) (5.56)

In order to find the structure of E{Qpp} we need to obtain one more equation that connects E{nQpp} and
E{nQp¢}. For this we repeat steps that led to (5.56)). Following the calculations with integration by parts
formula for E{Qpenlls} and E{Qppnlls} we obtain :

E{menf} - CNE{pr} (- cN)E{nprW}k(WfW}*)_sz}%E{T‘r (nH}pr) } +AL (557)
E{Qppnr{f} - CNE{QPP} (- cN)E{nprw;(WfW})*Wf}% { (nnf Qpp) } +AL, (558

where error terms A%)f and AII) are also satisfy Lemma 6l In the case with l we were able to
obtain from that E{nQppW, (W,W) 2W,} = 1= CN E{nQpp I} + O% (N~ 3 So now we show that
from it can be deduced analogues expression, i.e. (1 — cN)E{nprWf (WW5) 2V[/f} E{QpenlIl;} +
Oi\g( ) Indeed, first let us remind that N~ 1E{TI‘(7]HJ‘QPP)} =~ 4 05(N7F) for each k (see
). Since E{nprWJZ‘(WfW}“)_QWf} = 0,2(1) we rewrite as

(1= e )E{nQpe W (WyW;) 2 W, | = 1 _ZcN (E{Qupntly } — enE{Qpp}) + O <N§/g> (5.59)
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Using resolvent identity and the facts that 113 = I, E{nnIl;} = enIn + O,z (N—3/2) due to 1) we write

1 1 _ 1
E{Qppnll;} = ZE{(—; + ;(U}Zvﬂpnf ) 1U12vaHf)77NHf} = _;E{UNHf}

1 _ c 1 _
+ ~E{Qpently} + O2(N ) = == Iy + “E{Qpenllf} + 02 (N7F)

for each k. Putting this into r.h.s. of (5.59) we have :

1 1
(1- cN)E{nprW?(WfW}‘)—Wf} = 7o (on (v + 2E{Qpp}) + E{Qperlly}) + 0¥ <W>

It is left to notice that E{QpenIls} = E{(n?M,I1; — 22) "I, 1} = In + 2E{Qpp}. Thus we immediately
obtain that (1 — cN)E{nprW;(WfW}‘)—2Wf} = E{Qpenlls} + (’)%(N—?)/?).

Now we put obtained expression of (1—cn)E{nQpeW; (WfW;)_zwf into |i and since N‘lE{Tr(nH]%pr)}
coincides with N_I]E{Tr(nH;pr)} (due to the symmetry, see Lemma i and N_IE{Tr(nﬂépr)} =
0.2(1) we obtain

E{nQpell;} (1 + N—lE{ﬁ(nH;pr)}) = cnE{Qpe} + O <z\éﬂ>
or, taking into account E{QpenIl;} = In + 2E{Qpp},
(Iy + E{Qpu) (1 + N B{TH0T} Qur)}) = exE{Qur} + 0¥ (175

Further for more convenience we denote the scalars 1+ N_IE{Tr(nH]%pr)} =1+ N 'E{Tr(nll; Qgp)} by
wp (2z) or simply wy. Thus the last equation can be rewritten as

1
eNE{Qpt} = wn + 2wnE{Qpp} + O <N3/2> (5.60)
Finally we have a system of equation (5.60), (5.56) for E{Qp¢} and E{Qpp} :
1
CNE{pr} = wnN + ZWNE{Qpp} + Oi\é <>

N3/2
eNE{Qpp} = 2N E{Qpr} + O <

(5.61)
1
N3/2>

By putting the first equation of ([5.61)) into second one multiplied by ¢y we obtain with little algebra :

1

To conclude from this equation the statement of the lemma we need to prove that (cN — zQw?V) T = 0,2(1).

For this we write

1 1
— (5.63)
C?\/ - 32“’]2\/ 22wy < + N)

zsz

It is known that if f(z) € S(RY), then — 775 f(z)) € S(RY). Since N'E{Tr(nILy Qgp)} = N 'E{Tr(nlL; Qg )nIL) }
is a Stieltjes transform evaluated at z? of some positive measure curried by R* (due to reasons similar to
those in Corollary , this implies that —(z2wy) ™t = —(22(1 + N_1IE{T1V(77H$Qf1[,)}))_1 is also a Stieltjes
transform evaluated at 2% of some measure curried by R*, and as consequence we an say the same about

—272(— et wN)” 1. So the absolute value of r.h.s. of (5.63|) can be bounded with |z|?p~2(22) :
1 1 1 . 1 K|z|?
2 2,2 = 2 ) z 2 > 575
Cy — "Wy 22wy (—ZQCSN —i—wN) TN 22(—22051\] +wy)| P
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2,,2
This means that we can divide by cy — % and obtain

2
ZWh

1
E = N _In+OY (==
{Qpp} & — 2u?, N+ O <N3/2>

Also this and the first equation of system ([5.61)) provide us with the expression for E{Qp¢} :
2
_ cy N 1
E{pr} - C%V — ZQwJQVIN + 022 (N3/2>

5.1.3 Stieltjes transform and limiting distribution

Let us introduce the measure U = (cy01+ (1 —en)do) W (end1 + (1 — ey )do), where §, is the Dirac measure
at the point x, and denote by #y its Stieltjes transform. The goal of this Section is to prove that Gy —ty — 0
for N — +o0.

The form of {y and 7y is known (see for example Example 3.6.7. [49]). In particular it appears that ty
satisfies the equation , but in which the term O, (N ~2) is replaced 0, i.e.

A= Bl + (201 - ew) — () + L

In order to evaluate @y — ty it is natural to take a difference between equations ([5.54) and ([5.64)) :

=0 (5.64)

(Gn — En)(1 = 2)2(@n + ) +2(1 — ex) — 2) = O. (1\12)

We remind that ay = ay — 1_% + O,(N7F) (see (5.55)) and rewrite the Lh.s. of the last equation :

(any —tn) (1 —2)zay — (1 —2)(1 —eny) + (1 —2)2zty +2(1 —en) — 2+ O (NF) = 0, (]\%)
4

(G — In) (1= 2)za — (1= 2)(1 — ex) + (1 — 2)2fx +2(1 — en) — 2) + (@ — En) O <A§k> —o. (A;Q)

Since ay is a Stieltjes transform then |ay| = O,(1) and from (5.55) we have |ay| = O.(1), also ty is a
Stieltjes transform thus bounded by p~!(z). This means that (ay — t5)O.(N~F) = O,(N~F). Finally we
obtain the expression for (ay —ty) :

. 0.5
N N_(l—z)zaN—(l—z)(l—cN)+(1—z)sz+2(1—cN)—z

To evaluate denominator we return to (5.64)) and write :

- 1— 2
(I=2)zty+2(1 —cen) — 2= —ﬂ
2tn

Moreover, since ty is the Stieltjes transform of a positive measure curried by R, Imzty > 0 for z € C* and

- 1—cy)?
we also get that Im((1 — 2)zty) = Imz — Im(;N) > Imz. Now we rewrite denominator as
2ty

(1—cn)? >

(1-2)zay — (1= 2)(1—en) + (1= )2ty +2(1 —cx) — 2 = (1 - ) (“W —Ume) T

and notice that due to discussion in Corollary apn also is the Stieltjes transform of a positive measure
curried by RT, so Imzay > 0 for 2 € C*. Thus

—(1I—cn)® (1 —en)?Im((1 — 2)2ty)

1— —(1—2) A —cn)+ (1= 2)2iy +2(1 —en) — 2| 2 [1 — 2|1 P 3
(1= 2)zan = (1= 2)(1 —en) + (1= 2)zy +2(1 —en) =2 2 |1~ 2lm TEEERTE
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Finally, we remind that Im((1 — 2)2ty) > Imz and ty < (Imz)~! and conclude that on C*

anz) — in(z) < Z2WV ) A DI

0 e =~ -0 (5.65)

We introduce here the expression for £y on z € C*

3 z2=2(1—cn) 4+ /z2(z — den (1 — cn))
tn(z) = 2(1 —2)z

where we define function z — 1/z for z = |z|e??, § € (0,27) as v/z = \/|2[€?/2. In particular, if z € R and z =

ze® then \/z m Va and /z 9/{—%) —+/Z. Then one can easily obtain that there exists lim,_,, ,cc+ tn(2)
for x € (—00,0) N (4en (1 — cn), +00) and x # 1, that we will denote by {x(x) and

z—2(1—cn) — a(z —den(1 —cn))

(@) 2(1 — z)x o< (5.66)
tn(x) = .
z—2(1—cy) ;(1\/_35(:]3:);; 4CN(1—CN))’ z>4deny(l—en),z#1

Moreover, ty(z) is a solution of equation (5.64) with z replaced by z. It is also known that 7y = (cyd1 +
(1 —cn)do) B (end1 + (1 — en)do) is defined as

VAden (1 —cen) = A)
2rA(1 = N)

dﬁN()\> = 1[074CN(1—CN)}d)‘ + (1 — CN)(S)\ + max(2cN —1,0)0)_1 (5.67)

% i — 1SN 6 is also a positive probability measure carried by

Besides, it is easy to see that measure vy = o

R™ with corresponding Stieltjes transform ty(z) = % + 1(:—% and

_ z2(2ey — 1) 4+ \/Z(Z —4en(1 —cn))

tnlz) = 2en(1—2)z , #E€C
r(2cy —1) — y/x(x —4en(l —c
CL’(QCN—l)—}—\/x($—4CN(1—CN))? 2> den(l—en) o 41 '
2cy(1 — )z
We deduce several immediate but useful facts.
Remark 5.3. Since an(z) = an(z) + 1_% + O.(N7F) for each k, we can conclude that
an(z) —entn(z) = 0
for z € Ct. Also if we denote ty(z) = tn(2?), tn(2) = 2tn(22), we have immediately for 2> € CT
apn(z) —centy(z) = Oa.s. (5.69)
an(z) —ty(z) = 0a.s. (5.70)
Moreover, due to the Proposition ty € S(R) and
t(z)n = téVN(j) + i;;v (5.71)
Corollary 5.2. The empirical eigenvalue distribution Uy of 11, NIl N verifies
vN — N =0 (5.72)

weakly almost surely.
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Proof. Above we proved that E{ +TrQn(z)} — tn(2) — 0 for each z € C*. The Poincaré-Nash inequality
and the Borel Cantelli Lemma imply that +Tr(Qn(2)) — E{&TrQn(2)} — 0 as. for each z € C — RF.
Therefore, it holds that

TH@N(2) ~ Ex(2) = Oas. (5.73)

for each z € C*. Corollary 2.7 of |18] implies that oy — oy — 0 weakly almost surely provided we verify
that (Zn)n>1 is almost surely tight and that (n)n>1 is tight. Since 7y is a multiplicative free convolution
of Dirac measures, it is known that (In)n>1 is tight. For (On)n>1 we write

1
/ )\dﬁN<)\) = fTI‘HZLNHf’N <1
R N
almost surely. This implies that (Zn)n>1 is almost surely tight. ll

Also since Py is a deterministic equivalent of the empirical eigenvalue distribution of II, yIIf y, it immedia-
tely follows that vy is a deterministic equivalent of the empirical eigenvalue distribution of
(R]Lc ) 1/2R (R;J) IRL*

flpy flp, y(Rf,y)_

We define the support of 7y by Sy, obviously, it coincides with the support of v and Sy = [0, 4en(1—cn)]U
{1}1., >1/2- Moreover, the support of corresponding measure of t v is Sy = [—V/4en (1 —en), Vden (1 — en)]u
{£1}1. 51 s2- While ty is not a Stieltjes transform, we can however say that tx is also holomorphic outside
Sn.

5.1.4 Proof of Lemma [5.6|

To evaluate App and Ape we first should prove the next lemma which is based on the Poincaré-Nash
inequality.

Lemma 5.7. Let (Fn)n>1 and (Gn)n>1 be sequences of deterministic N x N matrices such that supy || Fn||,
supy ||GN|| < &, and consider sequences of deterministic N —dimensional vectors (a1 n)N>1, (a2 N)N>1 such
that supn|lain|| < k fori=1,2. Then, for each z € C* and i,j,h = {p, f}, it holds that

1 1

Var {NTrFQiJ-} — 0. <N2> : (5.74)

1
{ TrQUFnNHhG} 0. <J\72) , (5.75)

1 N 1
NTTQUF??NH;LG =0, neak (5.76)

1
Var (a{nQu Wi (WilVi) ™ F(WaWi) ™ Wias) = 0. (N) | (5.77)
Var {a]Qjja2} = O,2 (]b) , (5.78)
1

Var {a]Qi; F'nnIpas} = O,2 (N) . (5.79)

where C(2) can be written as C(z) = Pi(|2])P2 (1X2) for some nice polynomials Py and Ps.
Proof. We first prove for Qpp and denote by § the term £ = L ~ TrF'Qpp. The Poincaré-Nash inequality

. ) leads to

%\ goppm gy 08
Var{f}g Z E{(anl ) E{ 11,]1Wi2,]'2}8w }

i1,J1,M1 11,J1 12,J2
12,J2,m2
- o\
mi 2
+ Z { Wml E{Wll J1WZ2 ]2} <3Wm2 ) }
117J17m1 11,]1 12,72
12,72,M2
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We just evaluate the second term of r.h.s., denoted by ¢. Since F' does not depend on W, derivative of £ can

be found with help of ((5.35)) :

85 Ui * *\—1lemi x 77L
anlel — —NT‘I‘FQPPWP (Wpr) fil 1ej1Hp pr1i1§L
* m 1
_ %’I‘I‘FprWf(Wfo) lf lLejlnf Qpp i1>L + O (Nk>

It is easy to see that ¢ composed with four similar parts of the form

E , 5m1,m25i1+j1,i2+j2E {7726;1 H;_QfPFQPPW;(WPW*) 1f:f1f$2*(W W*) 1WPQ;pFQ?pH1J;eJ2}
1,j1,m1
12,]2,M2

(5.80)

where 1 < iy,i3 < L. Now we again denote [ = iy — i9 = jo — j1 which lies in (=L + 1, L — 1) and remark
* l !
that Zml’m%il’iz 5m1,m25i1_i2,lf$1f$2 = (Jé) ® Ipr) as well as > )

1€j,€;, = Jp this allow us to
rewrite last expression as

71,52 6j2_j1’

L—1
1 * *\ — l *\— * * ) * l
o= D E{nQTrH;prFQppr(Wpr) VI @ Ly ) (W, W) W, Qs F prHjJ}V’} (5.81)
I=—(L—1)

For each NV x ML matrices A and B, the Schwartz inequality and the inequality between arithmetic and
geometric means lead to

TeA(Ly @ ;)BT | < Sy @ 10 ) AT+ o meBI ) B

2N

T
Therefore, since Ijr ® Jz(l)J() < Iy and J*(l)J](\l]) < Iy

C

#(1) ol . ¢
TeA(Iy © ;) B I | < o

(TrA*A + TrB*B). (5.82)

o

We take A = B = H;prFQppW;n(WpW;)_l, then what is left is to bound N~'E{TrAA*}. Since
Qpp I Q1T Qep FQpp < 12 Qpp || QeplI*Iv and [ Qppll, [ Qepll = O2(1) we have with (W, W)~
(1= y/ex)? — 2e) 2 ppp, (see (5.4)) :

1 * *\— * * (V¢
~E {TrH;prFQppWPUQ(Wpr) 2, Qs F prng} < OXDE {|W, |2} = 0%(1) (5.83)

Taking into account that L is constant, this gives us immediately

1
= ()

which finishes the proof of (5 - ). Obviously for Qg, Qpr, etc. the proof is analogous.

To proof - - we follow the same scheme. If we take £ = TerpF TINH G then, after some calcula-
tion we come to the step where we need to evaluate IV IE{TI'AA*} with A = H prFnNH GQppW n(Wp W*)
and A = nNHZfGQppW; n(WyWw, )~L. As we can see, these expressions are sunllar to and can be eva-
luated in the same way, thus we omit further explanation.

is the consequence of since a]Qaz = TrQaqa] = TrQF for F' = azaj. Analogous, is the
consequence of . This completes the proof of Lemma |

Now we can return to the proof of Lemma @ We will focus on the App, the proof is analogues for Ape.
According to Lemma E{QppnIL,}, E{Qpp} and E{nQpp W, (W, W)W, } are diagonal, from this and
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(5.38) we conclude that App is also diagonal, so it is sufficient to evaluate only diagonal terms. We start
with (Tf),» and use Schwartz inequality :

L—-1
(Tl =| Y E { (Qap¥) T (e Jﬁ?)n(WpW;W)} '
I=—(L—1)
L1 1/2
< Z (Var ((QppJ](é)>M> Var <;[Tr ((IM ® Jﬁ?)n(WpW;)l)>>
I=—(L—1)

We apply (5.78) for a; = e, and ay = J' )er and take into account that Var(NTr((IM®J](\l4))77(WpW;)*1)) =
O(N~2). Then

1
(TF)rr| < O (N3/2> (5.84)
For second part we have
L—1 l o 1 l
(Tl =| > E { (7Qep ML) T (I @ JM)n(WpW;rl)} ‘
I=—(L-1)
= ) 1 0} nY) Y
< I_E(L:l) (Var ((nQppy'ML,) ) Var <NTr (v @ T, w;) )))

From (5.79) we get immediately

1

For T35 we obtain

. -
(T)l=| 3 E { (nQpp (W, W)™ (T @ J](\Q)(prg)—lwp) 3T (n ( J ”Hipr)}
l L
L—1
+ E { (nprW;f(WfW}‘) (I ® J¢! ))(WPW;)_IWP)TT %Tr (nJ](\lf_L)H]%QPP) } '
I=—(L—1)
L—1 l 1 1/2
< ¥ <Var ((nQupV; (W, W)~ (1ar @ i) (W, W) W, ) ) Var < ~Tr (n pr)>>
I=—(L-1)
L-1 . 1 l 1/2
+ > (Var ((nprW}*(WfW}‘)_l(IM ® J](\})(prg)—lwp) ) Var (NTr <77J§V)H;Qpp))>
I=—(L—1)

from what, using again (5.77)) and (5.76) we immediately get

@) = 0 (755 (5.86)

Finally, we have to deal with part E{€}, for this we remind that each of its terms is of the form E{ anS F},

*373

where F' is some, maybe random, bound factor. Schwartz inequality and Lemma gives us
1/2

1
B2 = 0f (1)

for any k € N. Since the number of such terms in E{£} is the multiply of L, we still have E{£} = O?(N~F).

Combining all above we conclude (5.40)).
To evaluate the normalized trace of Ap, we follow the same steps as above but with only difference that

we can use the better estimate of traces (5.74)-(5.75)) instead of ones for quadratic forms (5.78))-(5.79) which
will allow us to obtain order of O?(N~2).
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5.1.5 No eigenvalues outside the support.

We denote corresponding measure of ¢y by 7y and its support by Sy. The goal of this Section is to prove
the next Theorem.

Theorem 5.1. Assume that there exists € > 0, k1 € R, ko € RU {400} and an integer Ny such that
(k1 — € ka+e)NSy =9 VN > Ng.
Then with probability one, no eigenvalues of nJZVHvaHﬁN appears in [k1, ko] for all N large enough.

We first remark that we can consider the case where k3 < +00. Indeed, we recall that Uy>1Sy is a compact
subset, and almost surely, the largest eigenvalue of 7712va, ~NIIf n is for each N large enough upperbounded
by 1.

In order to establish Theorem [5.1], we use the Haagerup-Thornbjornsen approach ( [17], see also [7]). For this
we remark that in Section we basically proved the next proposition.

Proposition 5.2. Vz € CT, we have for N large enough,
1 1
E NTrQN(z) =iy +— N2’ rn(z)
where ry is holomorphic in CT and satisfies

@I < PleP (o)

Imz

for each z € C*, where Py and Py are nice polynomials.

Proof. Due to (5.65) for z € CT we have ay(z) — tn(2) = O,(N~2), so it is sufficient to remark that since
(p(2))~' < (Imz)~!, there exist two nice polynomials P; and P, such that an(z) — tn(z) < Pi(|2]) Pa(5Ls).

We now follow [8] and |17] and use the following Lemma

Lemma 5.8. Let ¢ be a compactly supported real valued smooth function defined on R™, i. e. ¢ € C°(RT,RT).
Then,

1 1
E < <Tro(niIL,I0y) ¢ — ¢>< )din(A) = O |+ (5.87)
N N
Proof. Due to Proposition we can write
E lTrqﬁ( 211,11 )¢ = llimIm o(z)E iTrQ(av—i—i ) ¢ dx (5.88)
N INHpiLf - T yl0 R+ N y '
as well as
1
d(N)doy(A) = limIm{ o(z)Sn(z + iy)dw} (5.89)
Sy ™ yl0 R+
Using Proposition we obtain
B TO0RILI) = [ o) = g limim g [ oo+ i (590)
~ re(nnIlpIly Un (A N27T£101m - )ry(z +iy)dz .

Since the function rx(z) = O,(1), we can use the result which was proved in |7, Section 3.3] and obtain

K, (5.91)

lim sup o(z)rn(z +dy)dx| <

yd0

R+

112



for some nice constant . This and (5.90) complete the proof. B

In order to establish Theorem we introduce a function ¢ € C2° such that 0 < ¢(\) <1 and

1, for A\ € [k, k2],
0, for A € R— (k1 —€,k2 +€)

Since for N large enough (k1 — €, k2 + €) NSy = & then fSN #(N)din(X) = 0 and according to Lemma

E {Ji[Tmﬁo(n?vaHf)} =0 <;2> :

Now we show that

1
Var {NTI‘¢0(7712\7Hpr)} =0 (N4>

For this we use again the Poincaré-Nash inequality

OTr o (n2, T1, 1T s oz [ OTrp(mATLI) )
Var{Tr¢o(niIL,IT;)} < ZE{ 51(/[/%1 f)E{VVZl LWt ( 8(1/1/]\7]”2 f)

11,J1 12,]2

1171 A 12,J2 7”2
ow; PR gy

11,71 12,J2

We only evaluate the first term of the r.h.s. of the inequality, denoted by 1, because the second is similar.
For this we write first

OTreo(n3 11,11 O(n3 11
AUNTRI) (i) AT
11,J1 11,71
. * *\—1\m 1
1<i <L <n%vnﬁﬂf¢a<n%vnpnf>wp (W, 7;) >“;1 +0 <Nk)
- L mi 1

in what follow we will omit it, since as we

for each k € N, here term O(N~¥) represents the term with 8Wm1
171

see above it will not give impact. For convenience we denote A = nNHZfH £ (LTI, )W (W, W)~ and
B = UJQVHJ%QZ){)(T]JQVHPHJ:)HPW}‘(WfW}k)_l, than one can easily see that

mi mo mi . L. i *1M9

E § E{A11]15m1 ma2 21+]1 22+J2A12]2 + Alljl6m17m2511+3177/2+L+]2Bi2j2
Z1712 1j1,m1
J2,m2

mi . L *1M9 mi *1M9
+ B7,1_]16m1,m2521+L+]1:Z2+]2A22]2 + Blljl5m1,m25z1+]1,12+32322j2

For all four terms we can apply the same trick from above, defining [ = i1 — i9 than we have
b=~ > E{masQa () @ L) + (AT B @ )

Tr(BJH 4 (1 @ 1)) + Te(BIVB* (1 © IM))}

Using (5.82)) for respective A, B we obtain

4(2L — 1
N

| < JE{TrAA" + T'BB*) (5.93)
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Let us evaluate
1 1 ) o
NE{TTAA b= NE{TrnJQVH;Hfﬁbé)(U?VHpr)Wp (Wpr) Qqubé(n?VHpr)HfH;‘} (5.94)
We denote £(A) = (¢((\))? and recall that IIy, Hé < Iy then
1 * 1 * *\ —
NE{TTAA } < NE{TTé(vaHpr)mvap (Wpr) QWP}

It is easy to see that |[nX Wy (W,W,)2Wpll = Inx WpWi (W,W) 72| = [In{ W,W) 71 < (1 + {/e2)? —
2¢)~!. This allows us to write that NT'E{TrAA*} < kN 'E{Tr{(n%1L,I1;)}. Finally Lemma implies
that %E{T&(f(n?\,ﬂpﬂf)} = O(N72). As for the second term, TrBB*, we will have the same result :

1 * 1 * *\ —
NE{TTBB b= NE{’I‘I.n?VHj‘-(ﬁ()(n]zVHPHf)HPWf (Wfo) 2anp¢/0(n]2VHpr)Hj{}
K _
< NE{Trf(szHpHﬁ} = O(N7?)

Therefore, we have checked that

Var{Tr¢o(nx1L,11;)} = O (]\}2) : (5.95)

Now we can complete the proof of Theorem as in [8]. For this we apply the classical Markov inequality
and combine with what above

1 1 1 2
P {NTrqSO(mZVHpr) > W} < N33R { <NTr¢0(n]2VHpr)> }

2
= N®/3 <Var {JIVTrcéo(n?vaHf)} + <E {;[Tr%(n?vﬂpﬂf)}) ) =0 <N}1/3> '

Applying Borel-Cantelli lemma, for N large enough, we have with probability one

1 9 1

NTY¢O(77NHPHf) < /3

By the very definition of function ¢, the number of eigenvalues of matrix n%IL,I1; lying in the interval
[k1, k2] is upper bounded by Treo(ndILI1f) < ﬁ Since this number of eigenvalues is an integer, we
conclude that with probability one there is no eigenvalues in the interval [k, k2] for each N large enough.

5.2 In the presence of signal

In this section we assume that signal (uy, )nez is present, and evaluate its influence on the eigenvalues of matrix
IT, 117 . For this, we notice that matrices Y7 (YY) ™'Y, and Yi(YrYy )~'Y} are finite rank perturbation
of matrices Wy (W,W;)~'W, and W}*(WfW}‘)_IWf due to the noise (vy)nez, so we can use the same
approach as in the previous chapter. Since the useful signal (u,),ecz is generated by the same minimal
state-space representation , we are keeping notations from the Section So as before we denote

YN = )\/}% =Win + G)LNALNC:)LN and HXVN = Wx(W;W})~'W; for i = p, f. Let us remind that in the

presence of signal we can not assume that Ry = I, thus W; = (I ® RN)l/QVVZ"iid.

Also, naturally, we keep assumptions related to the signal model (Assumptions [2| and , as well as Assump-
tion[6]on the limits of Ax and I'y. However, it appears that assumptions related to the asymptotic behaviour
of the eigenvalue distribution of Ry (Assumption as well as assumption related to the asymptotic be-
haviour of matrix which depends on both, signal and noise (Assumption , are not needed here and can be
replaced with milder one.
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Assumption 1. r x r matric Gy = O3 (I ® Rfvl)@N converge towards some matriz G.

In order to characterize the possible eigenvalues of IT, NI1f x that escape from S, = [0, 4cx(1—c.)JU{1}1c,51/9

0 1II,
m;, 0 >, that es-

cape form [0, 2/c.(1 — cx)]U{1}1,, 51 /9. For this we should first find the convenient expression for IT; — my.

we, as before, consider the squares of the positive eigenvalues of linearised version, i.e. <

Since it will be analogous for i = p, f, we consider only II, and for simplicity we drop index p. It is easy to
see that X¥* can be expressed as

SSF — WIW* + (WOA, 0) ( f ig) (A%*W >

Then with help of Woodbury identity we take the inverse od both sides :

(B2 = (WW) T - (WW)T WA, (W) o) D <A@*W*<WW*>‘1> ,

O (WW*)~1
where
B 0 I AGTIVOA  AOWHWWH 'O\ [0 I,
D‘<Izr+<n A2> (@*(WW*)1WéA o (WW*)-1e I A2 (5.96)

In order to avoid heavy calculations in what follows, below we simplify separately two expressions

~ A*TTW @ QVE T/ * ) —1

I, A?)\e*(WWw*'weA  e*Www* e

- 0 I AO* TIVOA AO*WH(WW*)~1e

_(I’"’O)<<Ir A2> <@*(WW*)—1WéA *(WWw*)~le 12 = Lo ) D
1.0} ) - 0D =0.1)~ (1.0D (597

and analogous

A W*(WW*)~1e 0 I,

D = -D .

( o (W)-1e I 0 (5.98)
Now, with (5.97)), one can easily obtain that

SR = WHWWH) T — (Y OA, WHWW)TLe)D (A%KV?VVEKRj
+OAO*(WWH)L - ((o, OA) — (éA,O)D) (A@gf{;xm 1)1)
— WHWWH)! - (—IVLOA, WHWIW)e)D <A%K$$K1)_l>

Finally, multiplying both sides of the last equation by ¥ and taking into account (5.98)) we have

B AxTTW
YHELH)TIS = W WwH) W — (~IVteA, wr(ww)~le)D ( AOTI )

O (WW*)~'w
+ W (W)~ OAS" — (-1 eA, W (W) ~'e) << O ) P (Aé*»

AO* 0
~AeTI"t >

—_ * *\ —1 o _HW,J_"A * s\ —1 D
WHWW*) 1w — ( OA, W*(WW*)~1e) (@*(WW*)—lw
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This allows us to conclude that for i = p, f

I, — IV = —AiD; Aj,

where
A = (10,0, W (W;W7)1ey) (5.99)
Now it is easy to check that
w *
—ZIN Hp _ —ZI_/ZI—/N Hp . Ap 0 .Dp 0 0* Ap (5 100)
My —zly nW  —zly 0 A;J\0o D)4 0
0 w
As for the first model in Chapter we denote by QW (z) the resolvent of <HW 6’ > and consider a
f

w
Hp

om0 > for each large enough N. Then with
f

positive real number y such that y is not an eigenvalue of <

z = y we rewrite r.h.s. of (5.100) as

-yly 11, _ (—yln HZV AW A, 0 D, 0 0 A;
(Hf —yIN)_<H‘]§V Iy ) |2y Q @1 A:) Lo o)\ o (5.101)

This gives us that y is an eigenvalue of (1_? %p > if and only if the determinant of the second factor on
f
r.h.s. of (5.101)) equals to 0, or equivalently
AQW (y) A, AQY (y)Af\ (D, 0
det 12—< p ~f PP~ P =0 5.102
(= (oo, aona) (o o, (2102

Also since due to (5.96) matrices D,, ; are invertible, last equation is also equivalent to

Dl 0 > - <A;Q}’V<y>Ap A;QXV(ny)) _
w (% pn) - (lakine, Zaora)) = (5:10)

f
Lemma 5.9. For each z € C\ S., where S, = (—2/ci(1 — ¢x), 2¢/cx(1 — ¢i)) U {£1}1. 510 and i # j €
{p, f} we have :

_ -1 _ _(1 - CN>A?V I,
D; < I 1_1CN 0% (I, ® RX/I)@N — 0 almost surely
(1 — CN)(I + ZtN(Z)) 2
— — AN 0
— AfQJ\iVA@ - 2tn(z) +1—cn 1+ En(2) — 0 almost surely
N{Z)Z -1
—_— 1
—MF 0
— A}QE{,AP = 22t N (2) N — 0 almost surely
0 0
o (1 B CN)Z r* 0
— AQW A — 2tn(z) N — 0 almost surely
0 0

Moreover, the 3 last convergence items hold uniformly on each compact subset of C\ 8.

Proof. The proof of this Lemma is postponed to the Section [5.2.1]
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We remind that O% (I ® R]}l)G ~ is denoted by Gy, then after trivial algebra, Lemma 1) implies that
asymptotically, for N — oo, the "limiting form" of Eq. (5.103) is

(—cenJen I (1- en)? o, 0
2tn(z)+1—cn _ 22t (2)
1-— t
I B en + 2ty (2) N 0 0
det , en(l—en) —0
(1 — CN) (1 — CN)CN 2
~——— Ty 0 = A I,
22ty (2) 2ty (2) +1—cn _
1- t
0 0 I, loen et
en(l—en)
(5.104)

Replacing 2ty (z) + 1 — ey by z2enty(2) (see (5.71)) and taking the limits of various terms when N — +o0
(due to Assumptions |§|, , following the classical stability results we can expect that the zeroes y of
equation ([5.103]) tend to the zeroes of limiting equation, i.e.

1—c, 1—c,)?
A2 I, d-c)p. 0
Y2t (y) ) y?t.(y)
t.
det (1— )2 T l—e =0. (5.105)
~ T, A2 I,
Yt (y) Y. (y) ,
t.
0 0 I Cyt(y) G
1 — c.

Here t,,t, are ty,tx with ¢y replaced by ¢,. Provided we establish that ((5.105) has a finite number s of
positive solutions, a property established below, the classical stability results of the zeros of holomorphic

functions derived in [4] (see also [10]) will imply that almost surely, for N large enough, Eq. (5.103) has
exactly s positive solutions in |24/c.(1 — ¢4 ), 1[ that converge towards the s positive solutions of ([5.105))

We now study the solutions of (5.105)). If we interchange the second and third row blocks and second and
third column blocks the determinant will not change and with Schur complement formula the Lh.s. of ([5.105))
becomes

2 -1
VW, 0 1o pp (—)p v, 0
det | 1o det | | ¥7t+W) y*t.(y) | e
2 2 2
—e. ) e e
_yzt*(y)G 0
Taking this into account and since det 1‘5* * V() # 0, Eq. (5.105)) equivalent to
T 1—ca *
1—c, 1—cy)?
SN e N -
det | Y t*(iu) , v t.(y) 0
U )ty (A2 + G
Y7t (y) y*ta(y)

Finally with another Schur complement formula, since det (y%,;c(y) (A2 + G, 1)) # 0 we obtained that y is

eigenvalues of ( 0 1 ) if and only if
m, 0

et ((1 —)? (A% ol (1—c)?

L THA? 4+ G ‘11“*) =0,
) ey )
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or equivalently,

qot (1 B DA+ G T(AZ+ G =0 (5.106)
I—c)2t(y) = T

We remind that the eigenvalues of II,II; that escape from the limiting spectrum S, = [0,4c¢,(1 — ¢,)] U

{1}1o5q /9 of HZVHI;V tend to the squares of the positive solutions of Eq. (5.106) that escape the limi-
0 I

ting spectrum S, = [-2y/c.(1 — ¢4),2y/cx(1 — )] U {£1}1, 510 of (HW 6’ > Since the eigenvalues of
f

II,II; do not exceed 1, we conclude that we are interested in the solutions of Eq. (5.106]) on the interval
]124/¢c«(1 — ¢4), 1[. For more convenience we replace t.(y) = yt.(y?) and t.(y) = t.(y?), then by replacing

by y we have (::EZ;)Q — % and Eq. (5.106)) becomes

- 2
t(y) 2 —1y—1 2 —1y—1
det — | —TH AL+ G r,(Az+G =0 5.107
. (y<(1_c*>t*<y> (A2 4 G2 460 (5.107)
The eigenvalues of I II; that escape from S, i.e. that belong to (4c.(1 — ¢x),1), te;’nd to the solutions
of (5.107) that belong (4c.(1 — ¢y),1). Let us also notice that Iy is the limit of Ay©} y©O, NAn. Since,
according to Assumption [6), matrix Ay tends to A,, we conclude that the sequence of rank P matrices
(@}2 NOp,N)N>1 converges towards a rank P matrix €, verifying I'y = AxQ,Ay. Taking this into account,
as well as commonly used fact that det (I + AB) = det (I + BA), we rewrite (5.107)) as

Ly N\
det <y <(1 — C*)t*(y)> F> =0, (5.108)

where F, = QX (I, + AJ'GIATY) 1L (T, + A*’lG*’lA*’l)’l; Since 2, is rank P matrix, this gives immedia-
tely that rank F, = Q, = P. Therefore, if we show that y(%ﬁ is increasing function on [4c, (1 —cy), 1]
it will mean that there exist at most P solutions of Eq. (5.107)). This justifies that the stability results of |4

holds, and as consequence, that at most P eigenvalues of II,I1; are outside S,. To prove this it is sufficient

to show that f Ez; is positive increasing function on [4c, (1 — ¢4), 1]. Indeed, since t.(y) = cit«(y) — 1‘%, then

bly) _, l-c
t(y) T yt(y)

Also, due to (5.66)), it is easy to see that yt.(y) is increasing on [4c, (1 — ¢), 1]. However, c,yt.(y) = yt.(y) +
(1 — ¢,) from what follows that yt.(y) is also increasing on [4c.(1 — ¢,), 1]. This along with (5.109)) give that

;EZ% is an increasing function on [4c, (1 — ¢4), 1]. Moreover, using (5.68)) we can calculate explicitly the value

at de (1 —cy) -

(5.109)

4e,(1—c)(2e —1)  2(1— . 2c, —1 1
(yt*(y))‘ _ C*( C*)( C*2 ) _ ( C*) = *(y) e Cx _1
y=dcx (1—cx) 2¢4(2¢4 — 1) 2¢, — 1 te(y) ly=ac.(1—cx) 2 2
This proofs that figg; is also positive on [4c,(1 — ¢4), 1]. Finally, we conclude that (1*??})7(2%(3/) is increasing
on [4ex(1 — ex), 1] and
y2(y) dell-c) e

(1 — ci)?t2(y) ‘y:4c*(1—c*) 41— )2 1 e

We remark that if ¢, < 1/2, then due to (5.66)), (5.68)) we have

BW)| c:A(1 = c)?(1 - y) (y(zc* —1) = Vyly — de.(1 - c*))>
te(y) ly=1  y—1 y(1 —y)des(1 — cy) (y —2(1 — ) — Vyly — de. (1 — c*)))

=1—cs
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and for ¢, > 1/2

L)) o (9—2(1—6*) + \/y(y—4c*(1—c*)))
GW)lmt TS 2o - 1)+l de (1 e)

:C*

yt3(y)
(1 —c)?t2(y)

Cx Cx \2
runs from 2 > 1 to (72-)°

With this we obtained that on the interval [4e, (1 —¢y), 1] for ¢, < 1/2 the expression takes all

yt(y)
(1 =)t (y)
Since G, is positive defined matrix, one can notice that || Fx|| < 1, so we conclude that for ¢, > 1/2 almost
surely no eigenvalues of II,II¢ escape from S, for N big enough and if ¢, < 1/2 the number of outliers

possible values from 12*0* < 1 to 1 and for ¢, > 1/2 value of

This implies that P coincides with the number of eigenvalues that escape from S, if and only if all the
non zero eigenvalues of F, are bigger than 1C . In this case, P can be consistently estimated. In order to
interpret the practical significance of the above condition on the eigenvalues of Fy, we observe that for N
large enough, the singular values of ©% N @ .~ coincide with the canonical correlation coefficients between
the row spaces of Uy y and Uy y which have the same behav10ur than the canonical correlation coefficients
between the spaces generated by the components of uZ and of un - So generally speaking we can say that
if the canonical correlation coefficients between the past and the future of u are large enough (thus making

the singular values of ), large) and if the r eigenvalues of Rﬁ’ N are also large enough (thus making matrix

Cx

A;! small), then all non zero P eigenvalues of F, will be greater than 7=~ and the number of outliers of

II, NIIf N is a consistent estimator for P in high-dimensional regime.

Finally, we denote by y; > y2... > ys the s solutions of Eq. (5.107) that are greater that 4c,(1 — ¢,) and
summing the above discussion we conclude by the next Theorem.

Theorem 5.2. If ¢, > 1/2 for N large enough no eigenvalues of Hp NIIg N lie outside the S,.
If ¢, < 1/2 for N large enough, exactly s largest eigenvalues )‘1,N . > )\SN of I, NIy N escape from
[0,4cs(1 —¢i)] and Ny — y; fori=1,...,s

We illustrate the above discussion by numerical experiments showing that eigenvalues outside the bulk
indeed tend to the square of solutions of equation ([5.106f). We consider a simple case, when P =2, K =1
and A is diagonal with eigenvalues a; and as. Figures @, [5.2] represent histograms of the eigenvalues of

realizations of the matrix (Rﬁy) 1/2R]Lc‘py(R£ )~ 1R§1|>;y(R§,y)_1/2’ as well as the graph of the density of

measure vy = %ﬁN — 1;%50 and the values of the square of solutions of equation (|5.106).
We take N = 2000, M = 130 and L = 4, so ¢y = 0.26. The eigenvalues of matrix Ry are deﬁnedbi

Mg, N = 1/2 4 F cos (w(2k]\—41)) for K =1,..., M, that makes matrix Ry to verify ﬁTr(RN) ~ 1. Figure
corresponds to a choice of (aj,as) for which s = 1, while s = 2 in the context of Figure

5.2.1 Proof of Lemma 5.9

Since the calculation are mostly similar to ones from Sections [5.1.2) and [5.1.4] we will present only sketch of
the proof.
We start with showing the first item of the Lemma. For this we obtain the expression for D, ! from li :

Dl =

7

A2 OTIWO. A OV * W*~1le,;
<Al Ir> (@*(Al(%zﬂz 08, NOITWH(W W) 91) (5.110)

I, ; WiWi*)_IWiéiAi @f(WZ'WZ-*)_IQi

Using the same arguments as in Lemma it is easy to obtain that E{W*(W, W)~} = E{(W; W)W} =
0 for i = p, f. Also we remind that E{IT}V} = ex I, + O(N7*) and E{(W;W;})~!} = (1 —en) LI @ Ry +
O(N~F) for each k € N (see -). Combining this with Poincaré-Nash inequality we obtain imme-
diately the first item of the Lemma.

Before passing to the second item of Lemma we introduce the next result
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FIGURE 5.1 — Histogram of the eigenvalues and graph of of density with 1 outlier

0.6 0.8 1.0

FIGURE 5.2 — Histogram of the eigenvalues and graph of density with 2 outliers

Lemma 5.10. For each z € C\ Sy, i # j € {p, f} and for each bounded sequences (an,bn)n>1 of N-
dimensional deterministic vectors, it holds that

— ay QXVN by — tn(2)aybn — 0 almost surely;

— ay Qi‘JZVN by —enty(2)ayby — 0 almost surely.
Moreover, these converges hold uniformly on each compact subset of C\ S..

Proof. Due to Remark we have that for each z, such that 22 € CT it holds a&y(z) — ty(z) — 0
and ayn(z) — enty(z) — 0. Proposition implies that both, E{Qjiy} and E{Qj;,} are multiple of
Iy up to an error term, from what immediately we have that each diagonal term of E{Qjy} converges
towards ay(z) and each diagonal term of E{Qjj,} converges towards cuy(z). This implies immediately
that ayE{Qiin}bn — tn(2)ayby — 0 and ajyE{Qjjy}bn — cntn(2)ayby — 0 for each z, such that
22 € C*. Using Poincaré-Nash inequality and Borel-Cantelli lemma we obtain almost sure convergence
of ay Qiiy b — EN(z)a}*vbN — 0 for each z, such that 22 € C*. To have convergence for each z € C\ S,
we remark that it can be concluded from Theorem [5.1] that almost surely for each § > 0 Qn(z) is analytic
on C\ &2, where 82 = {z € R : dist(x,S,) < 6}. In particular this implies that functions a’; Qjiy by and
ay Qijy b are also analytic on C\ 8¢ for N large enough. The use of Montel’s theorem allows to prove the
almost sure convergence towards for each z € C\ 8., as well as the uniformity of the convergence on each
compact subset of C\ S,. B
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We return to the proof of Lemma To deal with AijViVAZ- we first notice that similar to what is in
Lemma 5.4]it can be proved that BT} QWY Wy (WiW;)~'} = B{Q}Y W} (W;W;) '} = 0, from what follows,
with Poincaré-Nash inequality, that = x r blocks on secondary diagonal of A} QJ-ViV.Ai tend to zeros, i.e.

(AfQ};V.AZ‘)(pf), (AfQjViVAi)(fp) — 0 (where we refer with pp,pf,... to r x r blocks of 2r x 2r matrix
analogous to ) Without loss of generality we consider ¢ = p, j = f. In view of Lemma to find an
asymptotic equivalent of block (A;Q}gAp)(pp), it is sufficient to express sz ’LQ}gHgV L in terms of Qg and
QY. Since Q}’g = H;V(HZVH‘;V — 27l = (H}’CVHZV — z2)*1H¥V (see (5.9)), after straightforward calculations

we obtain
L QI IL ™ = (Qey — In — 2Qup)IL) = Qi — I — 2Qpy, — Iy — 2Q + 1LY +22Qyf

J
E{IV QYW IV = (14 22)an(z) — 1 — 2zan(2) — (1 — en)) Iy + O(N~32)

Due to Lemma we have that for any bounded sequences (ay,by)n>1 of N—dimensional deterministic
vectors a?VHZV’LprHZV’LbN —((1+ 2¥)entn(2) — 1 = 228n5(2) — (1 — en))aiby — 0. In order to obtain the

EN(Z) l—cn .
z + 22

corresponding expression stated in the Lemma, we refer to (5.71) and replace cyty(z) =

(14 22)enta(2) — 1 — 2:8n(2) — (1 — en) = En(2) (i - z> 42 X1 (5.111)

Let us remind that ty satisfies Eq. (5.53) but in which term O,>(N~2) is replaced with 0, i.e.

2(1 —en)

(], — CN)2

=0 5.112
- (5112)

(1—22)t%(2) + ( - z) tn(z) +

In order to simplify (5.111)) we rewrite Eq. ((5.112]) as

1-— CN

() + (1= ) () (3 2] + 255 = 1) 4 (0= ex) o 501 - e (z) =0

_ (—en)(1+42En(2)

T ()t (cn) what was stated in the

From what we immediately get that r.h.s. of ([5.111)) equal to

Lemma.

Finally, it is left to find an asymptotic of f f block, more precisely, we need to find the asymptotic behaviour of
E{(W,W; )_IWpQgW; (W,W;)~'}. Luckily, due to Lemma this matrix is diagonal, so we can consider
only the diagonal elements. For this we need to repeat the calculations of Section In order to avoid
another tedious and similar calculation, we provide only the idea and main steps. First it is necessary to apply
integration by parts formula for 3, . . E{Qgrthﬁit((WpW; )~ W, .} and follow the calculations
of Section [5.1.2] applying analogues arguments. In the end we obtain

mimi *\—1\ymimi 1
E{((WPW;)AWpQgW;)MI }= E{((prp) l)ilil N (E{TTQEY} - E{TTQEYHZV )
—E{ (W) W Qi Wy (W, ;) 7)

1

mim —

i1i11 1} NE{TrHnyQXIY} + 0752 (N 2)
Since E{(W,W;) ™'} = (1 — en) My + O(N—3/2) and QFXHZV = In + 2QY we can simplify the r.h.s. of
the last equation

E{(W, W)~ Wi W) 1

1111

= 1_ C]V’(ijvr__ 1— Z(i]v>
—B{ (W) W, QW (W, 1))

m”’“} (an — 1 — zéy) + O (N~32) (5.113)
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Analogous we express E{((W W*) 1WpQ¥W*)m1ml} :

1121

E{((W, W)~ WoQE W)™y = E{(W, W) ™ (E{TrQXV} E{TrQy' T })

11?1

mimi

K {((prg)*lprXwag(prg)* ) } NE{TrHZV’LQ}V} O (N72)

1171
We remark that N‘l]E{TrQXVHXV’L} = —z_lE{N_lTrHZV’L} = —17% (see ), then last equation can

be rewritten as

E{((W,W;) ' W,Qy w) ™™} =

1171

1-—
z

_l’_

{((W W)~ W, QW W (W, ) )Z;’”l} FOL(N72) (5.114)
Moreover, using resolvent identity, (WpW;)AWpQEVW; can be rewritten as (W,W;) 'W,(—z"'Iy +
z‘l(H?/HZV—ZQ)_lﬂ?/HZV)W; = —2_1[N+z_1(WpW;)_1WpQ¥W* Thus, comparing (]5 113D and (]5.114D
we retrieve the necessary formula for diagonal elements of E{(W,W,)~ 1VVPQWT/V*(VV W)=t}

*\ — * *\—1\M ay —1—za
E{(W,W;) "' W,Qiy W (W, W) ~H) ™™} N N

_ —2
T e ((—cn)tan—1—zan) & O=2(N7)

As we can see, all diagonal elements of E{(W, W)W, QWW*(W Wy)~'} are equal up to an error term,
what means that the matrix E{(WPW;)_leQgW;(W W)~ 11 is a multiple of Iy up to an error term.
Using again Lemma [5.10] we conclude that

cnty —1— 2t N

(W, WY, QYW (W, W) " Lhy — —aby — 0. 5.115
aN( p p) prp p( p p) N (1—CN)((l—CN)+CNtN—1—ZtN)aN N ( )

After replacing cyty with % + 12# we find that ety — 1 — 2ty = ta(2)(2 — 2) + 1;% — 1 which is
also the expression obtained in ([5.111]). Thus, we remind that

- 1 l—ev . (1-en)( + 2ty (2))
< ) + 22 b= 2tn(2) + (1 —cn)

and by putting this expression in (5.115)) we obtain the necessary asymptotic expression for (A;Q}g’.%lp)( 1.

Last two items of the Lemma are similar, so we focus only on the one of them, .A;ZQ pAp- Using the similar
arguments to ones in Lemma [5.4] we can obtain that pf, fp and ff blocks are zeros. To deal with pp block
we remark that HI;VQXY) = ZQ}?I and QWIIY = ng‘ff and express again

pPp™p
W, L
I QUL = QY — 2Q — 2Q + 21y + 2° QY
4

E{HWLQWHWJ‘} = ((1 + zz)dN(z) —2zan(z) + z) In + (’)22(]\7*3/2)

PEQWIL by — (14 22)En(2) — 2zentn(2) + 2)akyby — 0.

Using that exty(z) = @ + %7 the limiting expression becomes

Analogous to what above we obtain that a NH

(1+ ZQ)EN(Z) —2zentn(z) + 2 = (22 — 1)tn(2) — 2(1;CN) +z

With (5.112) we get immediately that r.h.s. of the obtained expression equal to — (212%;]\(’5 This finishes the

proof of the Lemma. W
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