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On the largest singular values of certain large
random matrices with application to the

estimation of the minimal dimension of the
state-space representations of high-dimensional

time series.
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Abstract

This paper is devoted to the estimation of the minimal dimension P of the state-space realizations of a high-
dimensional time series y, defined as a noisy version (the noise is white and Gaussian) of a useful signal with low
rank rational spectral density, in the high-dimensional asymptotic regime where the number of available samples N
and the dimension of the time series M converge towards infinity at the same rate. In the classical low-dimensional
regime, P is estimated as the number of significant singular values of the empirical autocovariance matrix between
the past and the future of y, or as the number of significant estimated canonical correlation coefficients between
the past and the future of y. Generalizing large random matrix methods developed in the past to analyze classical
spiked models, the behaviour of the above singular values and canonical correlation coefficients is studied in the
high-dimensional regime. It is proved that they are smaller than certain thresholds depending on the statistics of the
noise, except a finite number of outliers that are due to the useful signal. The number of singular values of the sample
autocovariance matrix above the threshold is evaluated, is shown to be almost independent from P in general, and
cannot therefore be used to estimate P accurately. In contrast, the number s of canonical correlation coefficients larger
than the corresponding threshold is shown to be less than or equal to P, and explicit conditions under which it is equal
to P are provided. Under the corresponding assumptions, s is thus a consistent estimate of P in the high-dimensional
regime. The core of the paper is the development of the necessary large random matrix tools.

Index Terms

Minimal state space realization of rational spectrum time series, autocovariance matrix between the past and the
future, canonical correlation coefficients between the past and the future, high-dimensional regime, large Gaussian
random matrix theory, low rank perturbations of large random matrices, Stieltjes transform.

I. INTRODUCTION

A. The addressed problem and the results.

Due to the spectacular development of data acquisition devices and sensor networks, it becomes very common to
be faced with high-dimensional time series in various fields such as digital communications, environmental sensing,
electroencephalography, analysis of financial datas, industrial monitoring, .... In this context, it is not always
possible to collect a large enough number of observations to perform statistical inference because the durations of
the signals are limited and/or because their statistics are not time-invariant over large enough temporal windows.
As a result, fundamental inference schemes do not behave as in the classical low-dimensional regimes. This
stimulated considerably in the ten past years the development of new statistical approaches aiming at mitigating
the above mentioned difficulties.
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In particular, a number of works proposed to use large random matrix theory in the context of high-dimensional
statistical signal processing, traditionally modelled by a double asymptotic regime in which the dimension M of
the time series and the sample size N both converge towards +∞. These contributions addressed, among others,
detection or estimation problems in the context of the so-called narrow band array processing model, also known
in the statistical community as the linear factor model. The M–dimensional observation (yn)n=1,...,N is a noisy
version of a useful signal (un)n∈Z that can be written as un = Hsn where (sn)n∈Z is a K-dimensional non
observable signal and H is a M ×K unknown (or partially unknown) deterministic matrix. In this context, some
relevant informations have to be inferred on the useful signal (un)n∈Z from the available samples y1, . . . , yN ,
e.g. estimation of K, of the column space of H , the non zero eigenvalues and associated eigenvectors of the
covariance matrix Ru = E(unu

∗
n) when (sn)n∈Zis assumed to be a stationary sequence,....The M × N observed

matrix Y collecting the N observations appears as the sum of a full rank random matrix due to the additive noise
with the M ×N rank K matrix U = HS where U and S are defined in the same way than Y . In this context, a
number of detection and estimation schemes are based on functionals of the empirical "spatial" covariance matrix
R̂y = Y Y ∗

N . In the traditional low dimensional regime where M is fixed while N → +∞, R̂y behaves as the true
covariance matrix Ry = E(yny

∗
n) of the observation, and this allows to evaluate quite easily the behaviour of the

various algorithms. The main difficulty of the high-dimensional regime follows from the well known observation
that, when M and N converge towards +∞ at the same rate, then R̂y is not a good estimator of Ry in the
sense that the spectral norm ‖R̂y − Ry‖ of the estimation error does not converge towards 0. However, when the
rank K does not scale with M and N , an assumption which in practice means that K

M is small enough, large
random matrix theory results related to the so-called spiked models, characterizing, among others, the eigenvalue
distribution and the K largest eigenvalues and related eigenvectors of R̂y (see e.g. [3], [4], [6], [7], [40]), allow
to evaluate the behaviour of the relevant functionals of R̂y , to analyze the performance of the traditional schemes,
and, sometimes, to propose improved algorithms (see e.g. [8], [15], [14] [24], [29], [36], [37], [50], [46], [51]). In
particular, provided the K non zero eigenvalues of Ru are larger than a certain threshold depending on the noise
statistics, then, under certain extra assumptions, K can be estimated consistently as the number of "significant"
eigenvalues of R̂y .

In this work, we consider the more general context where the useful signal (un)n∈Z coincides with the output of a K
inputs / M outputs filter, K < M , with unknown causal and causally invertible rational transfer function H(z) driven
by a K dimensional non observable sequence (in)n∈Z verifying E(in+ki

∗
n) = IKδk, which, necessarily, coincides

with a normalized version of the innovation sequence of u defined as the prediction error un−un/sp(un−k, k ≥ 1).
Normalized version of the innovation means that for each n, the components of in represent an orthonormal basis
of the K–dimensional space generated by the components of un − un/sp(un−k, k ≥ 1). We remark that, for each
frequency f ∈ [−1/2, 1/2], the spectral density of u is a rank K < M matrix, except if e2iπf is a zero of H(z).
In the following, we denote by P the Mac-Millan degree of H(z), i.e. the minimal dimension of the state-space
representations of H(z) = D+C(zI−A)−1B where A is a P ×P matrix with spectral radius ρ(A) < 1 and where
C,B,D are M × P, P ×K,M ×M matrices respectively. It is well known (see e.g. [27], [49], [31], Appendix
A) that the minimality of the state-space representation of H(z) is equivalent to (C,A) observable and (A,B)
commandable. We recall that (C,A) observable means that for each L ≥ P , the ML × P observability matrix
O(L) of (C,A) defined by

O(L) =


C
CA

...
CAL−1

 (I.1)

is a rank P matrix, while, similarly, (A,B) is commandable if the P ×ML commandability matrix C(L) of (A,B)
defined by

C(L) =
(
AL−1B,AL−2B, . . . , B

)
. (I.2)

is rank P as well. Then, un can be represented in the state-space form as

xn+1 = Axn +Bin, un = Cxn +Din, (I.3)

where the P -dimensional Markovian sequence (xn)n∈Z is called the state-space sequence associated to (I.3).
Moreover, we assume that the observed M–dimensional multivariate time series (yn)n∈Z is given by

yn = un + vn, (I.4)
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where (vn)n∈Z is a complex Gaussian "noise" term such that E(vn+kv
∗
n) = Rδk for some unknown positive

definite matrix R. (vn)n∈Z is of course independent from the useful signal u.

The estimation of the (minimal) dimension P of the state-space representation (I.3) from N avalaible samples
y1, . . . , yN is an important problem of multivariate time series analysis in that estimating P first allows to address
the estimation of matrices C and A, as well as of matrices B,D and R, at least if the three later matrices are
identifiable. In the standard asymptotic regime where N → +∞ while M remains fixed, standard estimation
procedures are based on the following well known ingredients (the reader is referred e.g. to [49] and [31] and the
references therein). First, as (vn)n∈Z is an uncorrelated sequence, the autocovariance sequence (Ry,k)k∈Z defined
by Ry,k = E(yn+ky

∗
n) verifies Ry,k = Ru,k = E(un+ku

∗
n) for each k 6= 0. Next, the autocovariance sequence Ru

of u can be represented as
Ru,k = CAk−1G (I.5)

for each k ≥ 1, where matrix G coincides with G = E(xn+1u
∗
n), which is also equal to G = E(xn+1y

∗
n) because

signals u and v are uncorrelated. Moreover, the pair (A,G) is commandable, and every triple (A′, C ′, G′) of
P × P,M × P, P ×M matrices for which (I.5) holds can be obtained from (A,C,G) by a similarity transform.
If we define the autocovariance matrix RLf |p,u between the past and the future of u as

RLf |p,u = E




un+L

un+L+1

...
un+2L−1

(u∗n, u∗n+1, . . . , u
∗
n+L−1

)
 (I.6)

then, it holds that
R

(L)
f |p,u = O(L) C(L), (I.7)

where O(L) is the observability matrix of the pair (C,A) and C(L) represents the commandability matrix of (A,G).
For each L ≥ P , matrices O(L) and C(L) are full rank, so that the rank of R(L)

f |p,u remains equal to P , and each

minimal rank factorization of R(L)
f |p,u can be written as (I.7) for some particular triple (A,C,G). As matrix RLf |p,y

defined in the same way than R(L)
f |p,u coincides with R(L)

f |p,u, we deduce from the above properties that P coincides
with the rank of RLf |p,y for each integer L ≥ P . Moreover, a particular pair (C,A) can be identified from any
minimal rank factorisation of RLf |p,y .
In order to estimate P from the available samples y1, . . . , yN , a standard approach is to estimate P as the number
of "significant" singular values of the empirical estimate R̂Lf |p,y of the true matrix RLf |p,y = RLf |p,u defined by

R̂Lf |p,y =
Yf,NY

∗
p,N

N
,

where matrices Yf,N and Yp,N are defined as

Yp,N =


y1 y2 . . . yN−1 yN
y2 y3 . . . yN yN+1

...
...

...
...

...
...

...
...

...
...

yL yL+1 . . . yN+L−2 yN+L−1

 (I.8)

and

Yf,N =


yL+1 yL+2 . . . yN−1+L yN+L

yL+2 yL+3 . . . yN+L yN+L+1

...
...

...
...

...
...

...
...

...
...

y2L y2L+1 . . . yN+2L−2 yN+2L−1

 . (I.9)

We note that the samples (yN+l)l=1,...,2L−1 are supposed to be available while we have assumed that only
the first N samples are observed. In order to simplify the presentation, this end effect is neglected. We also
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notice that a pair (C,A) can also be estimated from the truncated singular value decomposition of R̂Lf |p,y
(see [49] and [11] for a statistical analysis of the corresponding estimates). This approach provides consistent
estimates of P,C,A when N → +∞ while M , K,P and L are fixed because in this context, ‖R̂Lf |p,y−R

L
f |p,y‖ → 0.

Another way to estimate P is to resort to the canonical analysis of the observation y. In particular, P coincides
with the number of non zero canonical correlation coefficients between the spaces Yp,L and Yf,L generated
respectively by the components of yn+k, k = 0, . . . , L − 1 and yn+k, k = L, . . . , 2L − 1 for any L ≥ P . We
recall that these coefficients are defined as the singular values of matrix (RLy )−1/2RLf |p,y(RLy )−1/2 where RLy
represents the covariance matrix of the ML–dimensional vector (yTn , . . . , y

T
n+L−1)T . In order to estimate P from

the N avalaible observations y1, . . . , yN , a standard solution is to estimate the canonical correlation coefficients
between Yp,L and Yf,L by the canonical correlation coefficients between the row spaces of matrices Yp,N and
Yf,N defined by (I.8) and (I.9) respectively, and to estimate P as the number of significant coefficients, i.e. as
the number of significant singular values of matrix (R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1/2, or equivalently as the number of
significant eigenvalues of (R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1R̂L∗f |p,y(R̂Lf,y)−1/2. Here, matrices R̂Lf,y and R̂Lp,y are defined

by R̂Lf,y =
Yf,NY

∗
f,N

N and R̂Lp,y =
Yp,NY

∗
p,N

N respectively. In the standard low-dimensional regime N → +∞ and
M,K,P,L are fixed, it holds that ‖R̂Li,y − RLy ‖ → 0 for i = p, f as well as ‖R̂Lf |p,y − RLf |p,y‖ → 0. This
immediately leads to the conclusion that this approach provides consistent estimates of P . We again refer to [49]
and [31] and the references therein.

If M is large and that the sample size N cannot be arbitrarily larger than M , the ratio ML/N may not be small
enough to make reliable the above statistical analysis, in the sense that it cannot be expected that R̂Lf |p,y and R̂Li,y ,
i = p, f are close enough in the spectral norm sense from the true matrices RLf |p,y and RLy respectively. It is
thus relevant to study the behaviour of the above estimators of P in asymptotic regimes where M and N both
converge towards +∞ in such a way that cN = ML

N converges towards a non zero constant c∗. In this context,
matrix R̂Lf |p,y is no longer a consistent estimate of the true matrix R

(L)
f |p,y in the spectral norm sense. Therefore,

the singular values of R̂(L)
f |p,y have no reasons to behave as those of R(L)

f |p,y , and the same conclusion holds for
matrices (R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1/2 and (RLy )−1/2RLf |p,y(RLy )−1/2. Thus, it appears of fundamental interest to
evaluate the behaviour of the singular values of R̂Lf |p,y and (R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1/2, and to study whether the
largest singular values still allow to estimate P consistently, at least if the power of the useful signal u and the
non zero singular values of RLf |p,u or the non zero canonical correlation coefficients between the spaces Up,L and
Uf,L are large enough.

In this paper, we address these problems when the integers K and P do not scale with M and N , and thus
remain fixed integers. This in practice means that the following results are likely to be useful when the rank
K of the spectral density of u is much smaller than M , and when P is small enough compared to M and
N . As P is supposed to be a fixed integer, the integer L ≥ P will also be assumed to remain fixed when
M and N converge towards +∞. As explained below, the assumption K,P,L remain fixed implies that the
matrices R̂Lf |p,y and (R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1/2 are low rank perturbations of the random matrices R̂Lf |p,v and
(R̂Lf,v)

−1/2R̂Lf |p,v(R̂
L
p,v)
−1/2 built from the noise samples v1, . . . , vN instead of y1, . . . , yN . It is thus in principle

possible to use the perturbation techniques developed in [6], [7], [40]. However, the random matrix models that
come into play in this paper are considerably more complicated than in [6], [7], [40]. Thus, the following results
cannot be considered as direct consequences of [6], [7], [40].

We first evaluate in Section II the behaviour of the largest singular values of R̂Lf |p,y , or equivalently of the largest
eigenvalues of R̂Lf |p,yR̂

L∗
f |p,y and take benefit of the results in [33] in which the asymptotic behaviour of the

eigenvalues of R̂Lf |p,vR̂
L∗
f |p,v is characterized. Introducing some extra assumptions, we deduce from [33] that for

each ε > 0, almost surely, for N large enough, all the eigenvalues R̂Lf |p,vR̂
L∗
f |p,v are less than x+,∗+ ε for a certain

x+,∗ > 0. Using the perturbation techniques developed in [7] and [40], we obtain that the number of eigenvalues
of R̂Lf |p,yR̂

L∗
f |p,y that may escape from the interval [0, x+,∗] is between 0 and 2r where r represents the rank of

the covariance matrix R
(L)
u of the vector (uTn , . . . , u

T
n+L−1)T . When P = 1 and R = σ2I for some σ2, for any

r ≥ 1, we indicate how to produce simple examples such that 2r − 1 eigenvalues of R̂Lf |p,y escape from [0, x+,∗].
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This behaviour leads to the conclusion that P cannot be estimated consistently as the number of eigenvalues
that are larger than x+,∗ even if the useful u is powerful enough and the non zero singular values of R(L)

f |p,u are
large enough. While it would be possible to address the case c∗ ≥ 1, we will assume that c∗ < 1 to simplify the
exposition. Therefore, cN verifies cN < 1 for each N large enough .

Always under the assumption c∗ < 1, using the same approach, we then study in Section III the largest eigenvalues
of (R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1(R̂Lf |p,y)∗(R̂Lf,y)−1/2, which also coincide with those of matrix Πp,yΠf,y where
Πp,y and Πf,y represent the orthogonal projection matrices on the spaces generated by the rows of Yp and Yf
respectively. We first study the eigenvalue distribution of Πp,vΠf,v, and establish that it converges towards the free
multiplicative convolution product of c∗δ1 + (1− c∗)δ0 with itself. Notice that cNδ1 + (1− cN )δ0 coincides with
the eigenvalue distribution of matrices Πp,v and Πf,v. We also establish that almost surely, for N large enough,
all the eigenvalues of Πp,vΠf,v lie in a neighbourhood of the support [0, 4c∗(1 − c∗)] ∪ {1}1c∗>1/2 of its limit
distribution. Using the above mentioned perturbation techniques, we establish that if s represents the number of
eigenvalues of Πp,yΠf,y that escape from [0, 4c∗(1 − c∗)] ∪ {1}1c∗>1/2, then, s ≤ P , and eventually provide the
explicit conditions under which s = P . These conditions hold if c∗ < 1/2 and if the power of u and the non
zero canonical correlation coefficients between the spaces Up,L and Uf,L are large enough. These results allow to
conclude that, under certain reasonable well defined assumptions, it is possible to estimate P consistently using
the largest singular values of (R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1/2, but that the use of the largest singular values of R̂Lf |p,y
appears unreliable.

It has hard to explain intuitively why the use of the normalized matrix (R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1/2 allows to
estimate P consistently under certain assumptions, while this is not the case for matrix R̂Lf |p,y . We however
mention that matrix (R̂Lf,v)

−1/2R̂Lf |p,v(R̂
L
p,v)
−1/2 defined by replacing y by v does not depend on the covariance

matrix R of the random vectors (vn)n∈Z, while it is of course not the case of matrix R̂Lf |p,v . This invariance
property appears of course attractive, and plays an important role in the following. We also mention that matrix
(R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1/2 is connected with the canonical analysis of the time series y. Generally speaking, this
analysis has well established merits. In particular, it leads to the concept of stochastically balanced state-space
realizations which are known to be useful to derive model reduction algorithms ([49] and [31] and the references
therein).
We believe that the main findings of this paper are of potential interest for statistical signal processing and time
series analysis researchers. However, the large random matrix models that come into play in this paper are rather
complicated, and were almost not considered in previous works. Therefore, new random matrix tools have to be
developed and a number of technical intermediate results have to be established. In order to improve the readability
of this paper, we postpone the most technical steps in the Appendix, and sometimes provide sketches of proof
rather than detailed arguments.

B. On the literature.

We first mention that the problems considered in this paper have connections with the "Generalized Dynamic Factor
Models" introduced in the econometrics field, see e.g. [17], [18], [16]. In these works, the observation is still given
by yn = un+vn where un = [H(z)]in and vn are called the common component and the idiosyncratic component
respectively. H(z) is not assumed in [17] and [18] to be rational, while v is not necessarily an uncorrelated time
series. These papers still address estimation problems in the asymptotic regime where M and N converge towards
+∞, but [17], [18], [16] assume that the eigenvalues of the spectral density matrix of v remain bounded when
M and N increase, while the K non zero eigenvalues of the spectral density of u converge towards +∞. In this
context, it appears possible to estimate consistently from the available samples a number of parameters attached
to the useful signal u. In particular, if H(z) is rational, the estimation of P does not pose any problem (see [16]
devoted to the case H(z) rational). In contrast, the technical assumptions formulated in the present paper imply that
the eigenvalues of the spectral densities of u and v are of the same order of magnitude when M and N increase.
We refer the reader to [41] for a discussion on the practical relevance of the context of the present paper. Therefore,
the solutions developed in [17], [18], [16] cannot be used to design consistent estimates of P under our assumptions.

We next review the existing works that are more directly related to the present paper. The behaviour of the
eigenvalues of matrix RLf |p,vR

L∗
f |p,v was studied in [33], and we refer to this paper for the various references that
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addressed similar problems when L = 1, in the non Gaussian case, or when the time series (vn)n∈Z is possibly
correlated in the time domain. Apart [30], we are not aware of any previous work addressing the behaviour of
the largest singular values of matrices depending on estimated autocovariance matrices of y at non zero lags in
the presence of a low rank useful signal u. [30] assumes that v is possibly non Gaussian with covariance matrix
R = σ2I , and that the useful signal u is given by un = Hsn where H is a M×K matrix verifying H∗H = IK and
where the components (sk,n)n∈Z of (sn)n∈Z are independent times series. Using the above mentioned perturbation
analysis, [30] studies the eigenvalues of R̂1

f |p,yR̂
1∗
f |p,y that escape from the interval [0, x+,∗] introduced above.

We notice that if L = 1, matrix R̂1
f |p,y coincides with the standard estimate of the autocovariance matrix of y at lag 1.

We finally mention that a number of previous works addressed the behaviour of the canonical correlation coefficients
between the row spaces of two large random matrices. However, the underlying random matrix models are simpler
than in the present paper. More specifically, the structured random matrices Yp,L and Yf,L as well as Vp,L and Vf,L
are replaced by mutually independent matrices X1 and X2 with i.i.d. elements, a property that is not verified by
Yp,L, Yf,L, Vp,L and Vf,L. [53] addressed the case of M × N mutually independent complex Gaussian matrices
X1 and X2 with i.i.d. entries, and derived the corresponding limit distribution of the squared canonical correlation
coefficients. This is equivalent to evaluating the limit eigenvalue distribution of Π1Π2 where Π1 and Π2 represent
the orthogonal matrices on the row spaces of X1 and X2. We note that the result of [53] appears as a trivial
consequence of basic free probability theory results (see e.g. [52] [25], [35], as well as [47] for a more engineering
oriented presentation) because under the above hypotheses, Π1 and Π2 are almost surely asymptotically free. More
recently, [54] extended this result to the case where X1 and X2 are independent matrices with non Gaussian i.i.d.
entries. We also note that [55] took benefit of this result to propose independence tests between 2 sets of i.i.d.
high-dimensional samples. We mention that [5] extended the result of [53] to the case where X1 and X2 have
Gaussian i.i.d. entries, but this time E{X1X

∗
2

N } is a non zero low rank matrix. We finally notice that in [44], we
established the convergence of the eigenvalue distribution of Πp,vΠf,v by establishing the almost sure freeness of
Πp,v and Πf,v . We however mention that in order to study the largest eigenvalues of Πp,yΠf,y using perturbation
techniques, it is also necessary to evaluate the asymptotic behaviour of the resolvent of Πp,vΠf,v, a more difficult
issue that is solved in the present paper.

C. Assumptions, notations and basic tools.

We now introduce the main assumptions, notations and fundamental tools that will be used throughout this paper.
Assumptions
• We assume that L is a fixed parameter verifying L ≥ P , and that M and N converge towards +∞ in such a

way that

cN =
ML

N
→ c∗, 0 < c∗ < 1 (I.10)

This regime will be referred to as N → +∞ in the following. In the regime (I.10), M should be interpreted
as an integer M = M(N) depending on N . The various matrices we have introduced above thus depend on
N and will be denoted RN , Yf,N , Yp,N , . . .. In order to simplify the notations, the dependency w.r.t. N will
sometimes be omitted. We notice that the results of Section II devoted to the study of the largest eigenvalues
of R̂Lf |p,yR̂

L∗
f |p,y could be generalized to the case c∗ ≥ 1, but we prefer to assume c∗ < 1 in order to simplify

the presentation of the corresponding results. It therefore holds that cN < 1 for each N large enough.
• The sequence of covariance matrices (RN )N≥1 of M–dimensional vectors (vn)n=1,...,N is supposed to verify

a I ≤ RN ≤ b I (I.11)

for each N , where a > 0 and b > 0 are 2 constants. λ1,N ≥ λ2,N ≥ . . . ≥ λM,N represent the eigenvalues of
RN arranged in the decreasing order and f1,N , . . . , fM,N denote the corresponding eigenvectors. Hypothesis
(I.11) is obviously equivalent to λM,N ≥ a and λ1,N ≤ b for each N .

Notations
• For each 1 ≤ i ≤ 2L and 1 ≤ m ≤ M , fmi represents the vector of the canonical basis of C2ML with 1 at

the index m + (i − 1)M and zeros elsewhere. In order to simplify the notations, we mention that if i ≤ L,
vector fmi may also represent, depending on the context, the vector of the canonical basis of CML with 1 at
the index m + (i − 1)M and zeros elsewhere. Vector ej with 1 ≤ j ≤ N represents the j –th vector of the
canonical basis of CN .
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• For each integer l ≥ 1, we define the l × l "shift" matrix Jl as

(Jl)ij = δj−(i+1). (I.12)

• R+ and R− represent respectively the set of all non-negative numbers and non-positive numbers, and we
denote R∗ ≡ R \ {0}, R+∗ ≡ R+ \ {0} and R−∗ ≡ R− \ {0}. We also define C+ = {z ∈ C : Im(z) > 0}.
We finally denote by ρ(z) the distance from z ∈ C to R+, i.e.

ρ(z) = dist(z,R+) (I.13)

• By a nice constant, we mean a positive deterministic constant which does not depend on the dimensions M
and N nor of the complex variable z that appears in the various Stieltjes transforms introduced in this paper.
In the following, κ will represent a generic nice constant whose value may change from one line to the other.
A nice polynomial P (z) is a polynomial whose degree and coefficients are nice constants.

• If (αN )N≥1 is a sequence of positive real numbers and if Ω is a domain of C+, we will say that a sequence
of functions (fN (z))N≥1 verifies fN (z) = Oz(αN ) for z ∈ Ω if there exists two nice polynomials P1 and
P2 such that |fN (z)| ≤ αNP1(|z|)P2( 1

|Imz| ) for each z ∈ Ω. If Ω = C+, we will just write fN (z) =

Oz(αN ) without mentioning the domain. We notice that if P1, P2 and Q1, Q2 are nice polynomials, then
P1(|z|)P2( 1

|Imz| ) +Q1(|z|)Q2( 1
|Imz| ) ≤ (P1 +Q1)(|z|)(P2 +Q2)( 1

|Imz| ), from which we conclude that if the
sequences (f1,N )N≥1 and (f2,N )N≥1 are Oz(αN ) on Ω, then it also holds f1,N (z) + f2,N (z) = Oz(αN ) on
Ω.

• For any matrix A, ‖A‖ and ‖A‖F represent its spectral norm and Frobenius norm respectively. The transpose,
conjugate, and conjugate transpose of A are respectively denoted by AT ,Ā and A∗. If A is a square matrix,
Im(A) is the Hermitian matrix defined by Im(A) = A−A∗

2i . If A and B are Hermitian matrices, A ≥ B stands
for A−B non-negative definite.

• C∞c (R,R) represents the set of all C∞ real-valued compactly supported functions defined on R.
• If ξ is a random variable, we denote by ξ◦ the zero mean random variable defined by

ξ◦ = ξ − Eξ. (I.14)

Fundamentals tools

If n is a positive integer, then a n×n matrix-valued positive measure ω is a σ–additive function from the Borel sets
of R onto the set of all positive n× n matrices (see e.g. [42], Chapter 1 for more details). If ω is a n× n matrix-
valued positive finite 1 measure, the Stieltjes transform Sω of ω is the function defined for each z ∈ C \ Supp(ω)
by

Sω(z) =

∫
dω(λ)

λ− z
(I.15)

In the following, if B is a Borel set of R, we denote by Sn(B) the set of all Stieltjes transforms of n×n matrix-valued
positive finite measures carried by B. S1(B) is denoted S(B). We just mention the following useful properties of
the elements of Sn(R) and Sn(R+): if S ∈ Sn(R) and if ω represents its associated n× n matrix-valued positive
finite measure , then, S is analytic on C \ R and verifies

‖S(z)‖ ≤ ‖ω(R)‖
Imz

, ImS(z) ≥ 0 (I.16)

if z ∈ C+. Moreover, ω(R) = limy→+∞−iyS(iy). When the positive matrix ω(R) is positive definite, ImS(z) > 0
on C+. If S ∈ Sn(R+), then S is analytic on C− R+ and also satisfies

ImzS(z) ≥ 0, z ∈ C+, ‖S(z)‖ ≤ ‖ω(R+)‖
ρ(z)

, z ∈ C− R+ (I.17)

When ω(R+) > 0, we also have ImzS(z) > 0 on C+. We refer the reader to Proposition 4.1 in [33] for other
useful properties, and for a converse of (I.16, I.17). We finally mention the following immediate properties:

S ∈ Sn(R+) =⇒ S ∈ Sn(R) (I.18)

1finite means that Tr (ω(R)) < +∞
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where S(z) is defined for z ∈ C+ by S(z) = zS(z2). Moreover, if ω and ω are the positive matrix-valued measures
associated to S and S, the following equality holds:

ω(R+) = ω(R) (I.19)

If A is a n × n matrix, the resolvent of A is defined as the matrix-valued function QA defined on C −
{λ1(A), . . . , λn(A)} by

QA(z) = (A− zI)
−1 (I.20)

If A is Hermitian, it is clear that QA coincides with the Stieltjes transform of the n × n positive matrix-valued
measure ωA given by

ωA =

n∑
k=1

δλk(A)fk(A)fk(A)∗

where (fk(A))k=1,...,n represent the eigenvectors of A. We notice that ωA(R) = I , so that (I.16) leads to

‖QA(z)‖ ≤ 1

Imz
(I.21)

on C+ and
‖QA(z)‖ ≤ 1

ρ(z)
(I.22)

on C− R+ if A ≥ 0. We also mention that QA satisfies the "resolvent identity"

I + zQA(z) = QA(z)A = AQA(z) (I.23)

for each z. If νA = 1
n

∑n
k=1 δλk(A) represents the empirical eigenvalue distribution of A, 1

nTrQA(z) is the
Stieltjes transform of νA.

We recall that if (AN )N≥1 is a sequence of N × N Hermitian (possibly random) matrices, a convenient way to
study the behaviour of the sequence of probability measures (νAN )N≥1 when N → +∞ is to study the asymptotic
behaviour of the corresponding Stieltjes transforms SνAN (z) = 1

NTr (QAN (z)) because the weak convergence of
sequence (νAN )N≥1 towards a probability measure ν∗ is equivalent to the convergence of SνAN (z) towards the
Stieltjes transform of ν∗ for each z ∈ C+. This explains why Stieltjes transforms and resolvents play an important
role in large random matrix theory. We refer the reader to e.g. [2], [39], [56]. See also [13] and [47] for more
engineering oriented books.

We also recall Montel’s theorem (see e.g. [12]), also called the Normal Family Theorem, which is frequently
used in the large random matrix literature. If (sN (z))N≥1 is a sequence of functions that are holomorphic on a
domain Ω, and such that, for each compact set K ⊂ Ω, supN≥1 supz∈K |sN (z)| < +∞, then it is possible to
extract from (sN (z))N≥1 a subsequence converging uniformly on each compact subset of Ω towards a function
s∗(z) holomorphic on Ω. Note in particular that if for each N ≥ 1, sN is the Stieltjes transform of a probability
measure, then (sN (z))N≥1 verifies the above assumptions for Ω = C+ because |sN (z)| ≤ 1

Imz on C+ for each
N ≥ 1.

In this paper, we will consider frequently 2n× 2n matrices A given by

A =

(
0 B
C 0

)
where B and C are n× n matrices. The resolvent QA of A is given by

QA(z) =

(
zQBC(z2) QBC(z2)B
C QBC(z2) zQCB(z2)

)
(I.24)

If the eigenvalues of BC are real and positive, the eigenvalues of A are the ±
(√

λk(BC)
)
k=1,...,n

.

We finally recall the two Gaussian tools that will be used in the sequel in order to evaluate the asymptotic behaviour
of certain resolvents.
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Proposition I.1. (Integration by parts formula.) Let ξ = [ξ1, . . . , ξK ]T be a complex Gaussian random vector
such that E{ξ} = 0, E{ξξT } = 0 and E{ξξ∗} = Ω. If Γ : (ξ) 7→ Γ(ξ, ξ̄) is a C1 complex function polynomially
bounded together with its derivatives, then

E{ξiΓ(ξ)} =

K∑
k=1

ΩikE
{
∂Γ(ξ)

∂ξ̄k

}
. (I.25)

Proposition I.2. (Poincaré-Nash inequality.) Let ξ = [ξ1, . . . , ξK ]T be a complex Gaussian random vector such
that E{ξ} = 0, E{ξξT } = 0 and E{ξξ∗} = Ω. If Γ : (ξ) 7→ Γ(ξ, ξ̄) is a C1 complex function polynomially bounded
together with its derivatives, then, noting ∇ξΓ = [ ∂Γ

∂ξ1
, . . . , ∂Γ

∂ξK
]T and ∇ξ̄Γ = [ ∂Γ

∂ξ̄1
, . . . , ∂Γ

∂ξ̄K
]T

Var{Γ(ξ)} ≤ E
{
∇ξΓ(ξ)TΩ∇ξΓ(ξ)

}
+ E

{
∇ξ̄Γ(ξ)∗Ω∇ξ̄Γ(ξ)

}
. (I.26)

The combination of these two tools was first proposed in [38], see also [39] for an exhaustive reference. We also
mention [22] in which Propositions I.1 and I.2 are used in order to study the capacity of large MIMO channels.

II. THE LARGEST SINGULAR VALUES OF THE EMPIRICAL AUTOCOVARIANCE MATRIX.

A. Review of the zero signal case.

In this paragraph, we briefly present the useful results from [33] concerning the study of the singular values of
matrix R̂Lf |p,v , or equivalently of the eigenvalues of R̂Lf |p,v(R̂

L
f |p,v)

∗. All along Section II, we will denote by Wp,N

and Wf,N the ML×N normalized matrices defined by

Wp,N =
1√
N
Vp,N , Wf,N =

1√
N
Vf,N (II.1)

and by WN the 2ML×N matrix given by

WN =

(
Wp,N

Wf,N

)
(II.2)

We first mention that matrices Wi,N , i = p, f verify the following property.

There exists a nice constant κ such that, almost surely, for each N large enough, ‖Wi,N‖ < κ (II.3)

If RN was equal to IM , this property would be an immediate consequence of Theorem 1.1 in [32]. In the general
case, it is an immediate consequence of Eq. (3.1) in [33] and of (I.11).

In order to study the asymptotic behaviour of the eigenvalues of Wf,NW
∗
p,NWp,NW

∗
f,N , [33] studied the behaviour

of the resolvent, denoted QN,W (z), of the ML×ML matrix Wf,NW
∗
p,NWp,NW

∗
f,N , i.e.

QN,W (z) =
(
Wf,NW

∗
p,NWp,NW

∗
f,N − zI

)−1
(II.4)

The entries of QN,W are easily seen to concentrate almost surely around their mathematical expectations.
Therefore, it is sufficient to study the behaviour of E(QN,W (z)) using Propositions I.1 and I.2. As the entries
of Wf,NW

∗
p,NWp,NW

∗
f,N are bi-quadratic functions of the entries of WN , the Gaussian calculations that allow to

evaluate E(QN,W (z)) are very complicated. Therefore, [33] used the well-known linearization trick that consists
in studying the resolvent QN,W (z) of the 2ML× 2ML hermitized version(

0 Wf,NW
∗
p,N

Wp,NW
∗
f,N 0

)
Formula (I.24) allows eventually to deduce E(QN,W (z)) from the first diagonal block of QN,W (z). This linearization
trick will also be used extensively in the present paper. In the following, every 2ML × 2ML matrix G such as
QN (z) will be written

G =

(
Gpp Gpf

Gfp Gff

)
,

where the 4 matrices (Gi,j)i,j∈p,f are ML×ML. Sometimes, the blocks will be denoted G(pp), G(pf), ....
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In order to introduce the main results of [33], we recall Proposition 6.1 in [33]: for each z ∈ C+, the equation

tN (z) =
1

M
TrRN

(
−zIM −

zcN tN (z)

1− zc2N t2N (z)
RN

)−1

(II.5)

has a unique solution for which tN (z) and ztN (z) belongs to C+. Moreovoer, tN is the Stieltjes transform of a
positive measure µN carried by R+, and the M ×M matrix-valued function TN (z) defined by

TN (z) = −
(
zIM +

zcN tN (z)

1− zc2N t2N (z)
RN

)−1

, (II.6)

belongs to SM (R+). Its associated positive matrix-valued measure, denoted νTN , verifies νTN (R+) = I . We also
define tN (z) and TN (z) by

tN (z) = ztN (z2) (II.7)

and

TN (z) = zTN (z2) =

(
−zIM −

cNtN (z)

1− c2Nt2
N (z)

RN

)−1

(II.8)

which, by (I.18), belong to S(R) and SM (R) respectively. Moreover, the positive matrix-valued measure νT
N

associated to TN verifies νT
N (R) = νTN (R+) = I . Then, the following Proposition can be deduced from the results

of [33].

Proposition II.1. We consider sequences of deterministic ML×ML and 2ML× 2ML matrices (AN )N≥1 and
(AN )N≥1 verifying supN ‖AN‖ < +∞ and supN ‖AN‖ < +∞. Then, we have

1

ML
Tr ((QN (z)− IL ⊗ TN (z))AN )→ 0 (II.9)

and
1

2ML
Tr ((QN (z)− I2L ⊗TN (z))AN )→ 0 (II.10)

where the convergence holds almost surely and uniformly on the compact subsets of C\R+ and of C\R respectively.
Moreover, if (aN )N≥1, and (bN )N≥1 (resp. (aN )N≥1, (bN )N≥1) represent sequences of ML-dimensional (resp.
2ML-dimensional) deterministic vectors verifying supN ‖aN‖ < +∞ and supN ‖bN‖ < +∞ (resp. supN ‖aN‖ <
+∞ and supN ‖bN‖ < +∞), we also have

a∗N (QN (z)− IM ⊗ TN (z)) bN → 0 (II.11)

and
a∗N (QN (z)− I2L ⊗TN (z)) bN → 0 (II.12)

almost surely and uniformly on the compact subsets of C \ R+ and C \ R respectively.

We denote in the following ν̂N the empirical eigenvalue distribution of matrix Wf,NW
∗
p,NWp,NW

∗
f,N . The use of

(II.9) for AN = I leads to the conclusion that if νN represents the probability measure defined by

νN =
1

M
Tr νTN (II.13)

then ν̂N − νN → 0 weakly almost surely. Therefore, the empirical eigenvalue distribution ν̂N of
Wf,NW

∗
p,NWp,NW

∗
f,N has a deterministic behaviour when N → +∞, and measure νN will be referred to as

the deterministic equivalent of ν̂N in the following. [33] also characterized the support of νN , or equivalently the
support of µN because Assumption (I.11) implies that νN and µN are absolutely continuous one with respect to
each other. For this, the behaviour of tN (z) when z converges towards the real axis is studied in [33]. It is shown
that for each x > 0, the limit of tN (z) when z ∈ C+ converges towards x exists and is finite. This limit is still
denoted tN (x) in the following. This property implies that µN and νN are absolutely continuous w.r.t. the Lebesgue
measure (see e.g. Theorem 2.1 in [43]). Moreover, it is shown that the corresponding densities converge towards
+∞ when x→ 0, x > 0. In order to analyse the common support SN of µN and νN , the function wN (z) defined
by

wN (z) = zcN tN (z)− 1

cN tN (z)
(II.14)
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is introduced. For each z ∈ C − R+, wN (z) is solution of the equation φN (wN (z)) = z where φN (w) is the
function defined by

φN (w) = cNw
2 1

M
TrRN (RN − wI)

−1

(
cN

1

M
TrRN (RN − wI)

−1 − 1

)
. (II.15)

To understand the equation φN (wN (z)) = z, we remark that TN (z) can be written in terms of wN (z) as

TN (z) =
wN (z)

z
(RN − wN (z)I)

−1 (II.16)

so that tN (z) = 1
MTrRNTN (z) is equal to

tN (z) =
wN (z)

z

1

M
Tr
(
RN (RN − wN (z)I)−1

)
(II.17)

Plugging (II.17) into (II.14) leads to φN (wN (z)) = z. Moreover, if we define by wN (x) for x > 0 the limit of
wN (z) when z → x, z ∈ C+, the equality φN (wN (z)) = z is also valid on R+. It is proved that x ∈ S◦N if
and only Im(wN (x)) > 0 (S◦N represents the interior of SN ) and that x ∈ (S◦N )

c if and only if wN (x) is real.
Moreover, w′N (x) > 0 for each x ∈ (SN )

c. Finally, if x ∈ (SN )
c, it holds that

φN (wN (x)) = x, φ
′
(wN (x)) > 0, wN (x)

1

M
TrRN (RN − wN (x)I)

−1
< 0. (II.18)

This property allows to prove that the support SN of µN contains 0, and coincides with the union of intervals whose
end points, apart 0, are the extrema of φN whose arguments verify 1

MTrRN (RN − wI)
−1

< 0, see Corollary 7.2
in [33]. If we denote by x+,N the largest element of SN , then, x+,N = φN (w+,N ) where w+,N > λ1,N = λ1(RN )
is the largest solution of φ′N (w) = 0. It is established that supN≥1 x+,N < +∞ and supN≥1 w+,N < +∞. A
sufficient condition on the eigenvalues of RN ensuring that the support of µN is reduced to the single interval
[0, x+,N ] is formulated (see Lemma 7.7 in [33]). Using the Haagerup-Thorbjornsen approach ([20]), it is finally
proved that if d > 0 verifies [d,+∞) ∩ ∪N≥N0

SN = ∅ for some integer N0, almost surely, for N large enough,
all the eigenvalues of Wf,NW

∗
p,NWp,NW

∗
f,N are smaller than d. When SN is reduced to [0, x+,N ], this property

implies that for each ε > 0, for each N large enough, then all the eigenvalues of Wf,NW
∗
p,NWp,NW

∗
f,N are smaller

than supN≥N0
x+,N + ε where N0 is a large enough integer.

B. Signal model and first assumptions

Now we pass to the case when signal (un)n∈Z is present, and evaluate its influence on the eigenvalues of matrix
YfY

∗
p

N

(
YfY

∗
p

N

)∗
. For this, we use a classical approach based on the observation that matrix

YfY
∗
p

N is a finite rank

perturbation of matrix
VfV

∗
p

N due to the noise (vn)n∈Z. It will be assumed that for each N large enough, the support
SN of measure µN associated to tN (z) is reduced to the single interval SN = [0, xN,+], see Assumption II.5 below.

We recall that the useful signal (un)n∈Z is generated by the minimal state-space representation (I.3). As M is
supposed to increase towards +∞, it is first necessary to precise how the parameters of (I.3) depend on M . We
formulate the following assumptions:

Assumption II.1. • (in)n∈Z is a K–dimensional white noise sequence such that E(ini
∗
n) = IK , and which is

independent of M and N
• The dimension P of the state-space does not scale with M and N and matrices A and B are independent of
M and N .

• Matrices C = CN and D = DN depend of M and thus on N , and are supposed to verify

sup
N
‖CN‖ < +∞, sup

N
‖DN‖ < +∞ (II.19)
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We recall that L ≥ P . As a consequence of Assumption II.1, the P–dimensional Markovian signal (xn)n∈Z is
independent of M and N . We define matrix HN as the ML×KL block-Toeplitz matrix defined by

HN =



DN 0 . . . . . . 0

CNB DN 0
. . . 0

... CNB
. . . . . .

...

CNA
L−3B

. . . . . . . . .
...

CNA
L−2B CNA

L−3B
. . . CNB DN


(II.20)

Then, it is easy to check that the ML–dimensional vector uLn = (uTn , . . . , u
T
n+L−1)T can be written as

uLn = (ON ,HN )

(
xn
iLn

)
(II.21)

where iLn is defined as uLn and where we recall that the observability matrix ON is defined by (I.1). We formulate
the following assumption:

Assumption II.2. The rank r ≤ P +KL of matrix (ON ,HN ) remains constant for N large enough.

In the following, we denote by Uf,N and Up,N the ML × N matrices defined as the analogues of Yf,N
and Yp,N obtained by replacing the M–dimensional vectors (yn)n=1,...,N+2L−1 by the M–dimensional vectors
(un)n=1,...,N+2L−1. We also denote by RLu,N = E(uLnu

L∗
n ) the covariance matrix of uLn , and recall that E(uLn+Lu

L∗
n )

coincides with RLf |p,N = E(yLn+Ly
L∗
n ). We also recall that Rank(RLf |p,N ) = P for each L ≥ P and claim that

Assumption II.2 implies that for N large enough, Rank(RLu,N ) = r for each L ≥ P . This is because RLu,N is
given by

RLu,N = (ON ,HN )

(
Rx 0
0 IKL

)
(ON ,HN )

∗ (II.22)

where Rx = E(xnx
∗
n) coincides with

Rx =

∞∑
k=0

AkBB∗A∗k

Rx is positive definite because the minimality of the state-space representation (I.3) of u implies that the pair
(A,B) is commandable. Therefore, Assumption II.2 implies that Rank(RLu,n) = r for each N large enough. In the
following, we denote by

RLu,N = ΘN∆2
NΘ∗N (II.23)

the eigenvalue / eigenvector decomposition of RLu,N where ∆2
N = Diag(δ2

1,N , . . . , δ
2
r,N ) where (δ2

k,N )k=1,...,r

are the eigenvalues of RLu,N arranged in the decreasing order and where ΘN is the ML × r orthogonal matrix
corresponding to the eigenvectors.

We now take benefit of Assumptions II.1 and II.2 to evaluate the properties of matrices
Ui,NU

∗
i,N

N for i = p, f and
Uf,NU

∗
p,N

N .

Proposition II.2. The following convergence result hold:∥∥∥∥Ui,NU∗i,NN
−RLu,N

∥∥∥∥→ 0 (II.24)∥∥∥∥Uf,NU∗p,NN
−RLf |p,N

∥∥∥∥→ 0 (II.25)

for i = p, f .

Proof. In the following, we denote by X1,N and XL+1,N the P ×N matrices defined by

X1,N = (x1, x2, . . . , xN ), XL+1,N = (xL+1, xL+2, . . . , xN+L) (II.26)
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and by If,N and Ip,N the KL×N matrices defined as the analogues of Yf,N and Yp,N obtained by replacing the
M–dimensional vectors (yn)n=1,...,N+2L−1 by the K–dimensional vectors (in)n=1,...,N+2L−1. It is easy to check
that

Up,N = ON X1 +HN Ip,N , Uf,N = ON XL+1,N +HN If,N (II.27)

As P,K,L remain fixed, matrix
1

N

(
X1,N

Ip,N

)(
X∗1,N I∗p,N

)
converges almost surely towards the covariance matrix of vector

(
xn
iLn

)
, i.e. matrix(

Rx 0
0 IKL

)
As the rank of this matrix is obviously P + KL, the same property holds for

(
X1,N

Ip,N

)
for N large enough.

Moreover, (II.19) implies that
sup
N
‖(ON ,HN )‖ < +∞ (II.28)

Using the equation

Up,NU
∗
p,N

N
= (ON ,HN )

1

N

(
X1,N

Ip,N

)(
X∗1,N I∗p,N

)
(ON ,HN )

∗
,

(II.22) and (II.28) imply that

‖RLu,N −
Up,NU

∗
p,N

N
‖ → 0 (II.29)

It holds similarly that

‖RLu,N −
Uf,NU

∗
f,N

N
‖ → 0 (II.30)

Moreover, the column space of matrices Up,N and Uf,N both coincide with the r–dimensional column space of
(ON ,HN ) for N large enough. Therefore, Rank

(
Ui,NU

∗
i,N

N

)
= r almost surely for N large enough. We also

remark that
1

N

(
XL+1,N

If,N

)(
X∗1,NI

∗
p,N

)
→ E

[(
xn+L

iLn+L

)(
x∗n, i

L∗
n

)]
=

[
E
(
xn+L(x∗n, i

L∗
n )
)

0

]
Therefore, using (II.28), we obtain that∥∥∥∥ 1

N
(ON ,HN )

(
XL+1,N

If,N

)(
X∗1,NI

∗
p,N

)( O∗N
H∗N

)
− (ON ,HN )

(
E
(
xn+L u

L∗
n

)
0

)∥∥∥∥→ 0 (II.31)

because (II.21) holds. It is easily seen that matrix E
(
xn+Lu

L∗
n

)
coincides with CN = (AL−1G, . . . , G) (we recall

that G = E(xn+1u
∗
n), see Paragraph I-A). Moroever, as RLf |p,N = E(uLn+Lu

L∗
n ) is equal to ONCN , we obtain that

(ON ,HN )

(
E
(
xn+L u

L∗
n

)
0

)
= ONCN = RLf |p,N

Therefore, (II.31) implies that (II.25) holds. �

We introduce the singular value decompositions of matrices Up,N√
N

and Uf,N√
N

:

Up,N√
N

= Θp,N ∆p,N Θ̃∗p,N ,
Uf,N√
N

= Θf,N ∆f,N Θ̃∗f,N (II.32)

where Θi,N ,∆i,N , Θ̃i,N are ML × r, r × r, N × r matrices that of course depend on N for
i = p, f . We deduce from (II.25) that Rank

(
Uf,NU

∗
p,N

N

)
= P for each N large enough. As

Uf,NU
∗
p,N

N coincides with Θf,N∆f,N Θ̃∗f,N Θ̃p,N∆p,NΘ∗p,N , we obtain that Rank
(

∆f,N Θ̃∗f,N Θ̃p,N∆p,N

)
= P ,

Rank
(

∆N Θ̃∗f,N Θ̃p,N∆N

)
= P and that Rank

(
Θ̃∗f,N Θ̃p,N

)
= P for each N large enough. As in the previous
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works devoted to the study of conventional spiked models (see e.g. [7], [10]), it is necessary to introduce assumptions
concerning the existence of limits of certain terms depending on the statistics of the useful signal u. In particular,
we will need the following assumption.

Assumption II.3. r× r matrices ∆N and Θ∗NR
L
f |p,NΘN converge towards matrices ∆∗ and Γ∗ respectively. It is

moreover assumed that ∆∗ > 0.

We notice that Rank(Γ∗) = P . As seen below, the proofs of the main results of this paper appear simpler when
we assume the following condition

δ1,∗ > . . . > δr,∗ (II.33)

where (δk,∗)k=1,...,r represent the diagonal entries of ∆∗. Therefore, in the following, we will assume that condition
(II.33) holds, and discuss briefly in Sections II-F and III-C below how the results can be extended to the case where
some of the diagonal entries of ∆∗ > 0 coincide. In order to explain why condition (II.33) allows to simplify the
following arguments, we establish the following result.

Proposition II.3. For i = p, f , matrices (∆i,N )N≥1 verify

‖∆i,N −∆N‖ → 0 a.s. (II.34)

Moreover, if condition (II.33) holds, and if the r left singular vectors (θi,N,k)k=1,...,r of Ui,N√
N

are chosen in such
a way that θ∗N,kθi,N,k is real and positive, then we have

‖Θi,N −ΘN‖ → 0 a.s. (II.35)

Proof. (II.34) is a consequence of (II.24) and of the Weyl inequalities which imply that |δ2
i,N,k−δ2

N,k| ≤ ‖
Ui,NU

∗
i,N

N −
RLu,N‖. We thus notice that (II.34) holds even when Assumption (II.3) is not verified. In order to verify (II.35), we
first remark that (II.24), Assumption (II.3) and (II.34) imply that

‖Θi,N∆2
∗Θ
∗
i,N −ΘN∆2

∗Θ
∗
N‖ → 0 (II.36)

when N → +∞. Condition (II.33) implies that the eigenvalues of matrices Θi,N∆2
∗Θ
∗
i,N and ΘN∆2

∗Θ
∗
N have

multiplicity 1. Therefore, standard results of perturbation theory of Hermitian matrices lead to the conclusion that

‖θi,N,kθ∗i,N,k − θN,kθ∗N,k‖ → 0

for k = 1, . . . , r. This implies that ‖θi,N,k − (θ∗N,kθi,N,k) θN,k‖ → 0 as well as |θ∗N,kθi,N,k|2 → 1. The condition
(θ∗N,kθi,N,k) real positive leads to (θ∗N,kθi,N,k)→ 1 and to

‖θi,N,k − θN,k‖ → 0

for each k = 1, . . . , r. This completes the proof of (II.35). �

Condition (II.33) allows to replace matrices ∆i,N and Θi,N for i = p, f by matrices ∆N and ΘN up to error
terms that converge towards 0. In particular,

Uf,NU
∗
p,N

N = Θf,N∆f,N Θ̃∗f,N Θ̃p,N∆p,NΘ∗p,N verifies ‖Uf,NU
∗
p,N

N −
ΘN∆N Θ̃∗f,N Θ̃p,N∆NΘ∗N‖ → 0. We introduce the rank P matrix ΓN given by

ΓN = ∆N Θ̃∗f,N Θ̃p,N∆N (II.37)

Then, (II.25) implies that
‖RLf |p,N −ΘNΓNΘ∗N‖ → 0 (II.38)

and that, under condition (II.33),
lim

N→+∞
ΓN = Γ∗ (II.39)

We notice that if some of the entries of ∆∗ coincide, then (II.39) does no longer hold. This point will be explained
in Section II-F. If we consider the singular value decomposition

ΓN = ΥNΞN Υ̃∗N (II.40)

of matrix ΓN , then, (II.38) implies that the P non zero singular values of RLf |p,N have the same asymptotic
behaviour than the P non zero singular values (χk,N )k=1,...,P of ΓN , and converge towards the singular values of
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matrix Γ∗.

We finally notice that the canonical correlation coefficients between the row spaces of Up,N and Uf,N , i.e. the
singular values of matrix Θ̃∗f,N Θ̃p,N , and the canonical correlation coefficients between the spaces Up,L and
Uf,L generated by the components of (un+L)n=0,...,L−1 and (un+L)n=L,...,2L−1, i.e. the singular values of matrix
∆−1
N Θ∗NR

L
f |p,NΘN∆−1

N , have the same asymptotic behaviour. For this, we just use (II.38), (II.39) as well as the
convergence of ∆N towards ∆∗ > 0, and obtain that

‖∆−1
N Θ∗NR

L
f |p,NΘN∆−1

N − Θ̃∗f,N Θ̃p,N‖ → 0 (II.41)

C. General approach

We first briefly explain the general approach that will be used in the following to evaluate the behaviour of
the eigenvalues of

Yf,NY
∗
p,N

N

Yp,NY
∗
f,N

N . In order to simplify the notations, we denote by Σi,N and Wi,N matrices
Σi,N =

Yi,N√
N

and Wi,N =
Vi,N√
N

for i = p, f . It is easy to check that

ΣfΣ∗p = WfW
∗
p + (Θf ,Wf Θ̃p∆p)

(
∆f Θ̃∗f Θ̃p∆p Ir

Ir 0

)(
Θ∗p

∆f Θ̃∗fW
∗
p

)
(II.42)

We denote by A and B the matrices defined by

A =
(

Θf ,Wf Θ̃p∆p

)
(II.43)

and

B =
(

Θp,WpΘ̃f∆f

) (
∆pΘ̃

∗
pΘ̃f∆f Ir
Ir 0

)
(II.44)

Then, an easy calculation leads to(
−z I ΣfΣ∗p
ΣpΣ

∗
f −z I

)
=

(
−z I WfW

∗
p

WpW
∗
f −z I

)
+

(
A 0
0 B

) (
0 I2r
I2r 0

) (
A∗ 0
0 B∗

)
(II.45)

We recall that QW (z) represents the resolvent of matrix
(

0 WfW
∗
p

WpW
∗
f 0

)
. Consider a positive real number

y such that y is not eigenvalue of
(

0 WfW
∗
p

WpW
∗
f 0

)
for each N large enough (some conditions on such an

eigenvalue will be precised below). For z = y, the left handside of (II.45) can also be written as(
−y I ΣfΣ∗p
ΣpΣ

∗
f −y I

)
=

(
−y I WfW

∗
p

WpW
∗
f −y I

) (
I2ML + QW (y)

(
A 0
0 B

) (
0 I2r
I2r 0

) (
A∗ 0
0 B∗

))
(II.46)

Therefore, y is eigenvalue of
(

0 ΣfΣ∗p
ΣpΣ

∗
f 0

)
if and only the determinant of the second term of the right

handside of (II.46) vanishes. Using the identity det(I +EF ) = det(I +FE), we obtain that y is an eigenvalue of(
0 ΣfΣ∗p

ΣpΣ
∗
f 0

)
if and only

det

(
I4r +

(
A∗ 0
0 B∗

)
QW (y)

(
A 0
0 B

)(
0 I2r
I2r 0

))
= 0 (II.47)

or equivalently if
det (I4r + FN (y)) = 0 (II.48)

where FN (z) is the 4r × 4r matrix-valued function given by

FN (z) =

(
A∗QW,pf (z)B A∗QW,pp(z)A
B∗QW,ff (z)B B∗QW,fp(z)A

)
(II.49)

We will see that under certain technical assumptions, FN (y) converges towards a deterministic matrix F∗(y) and
that the solutions of (II.48) converge towards the solutions of the deterministic equation det (I4r + F∗(y)) = 0,
which, fortunately, can be analyzed.
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D. New assumptions and their consequences.

We need to distinguish two kinds of extra-assumptions.
• Assumptions on the asymptotic behaviour of the eigenvalue distribution of matrix RN .

Assumption II.4. If ωN = 1
M

∑M
k=1 δλk,N is the eigenvalue distribution of matrix RN , it is assumed that

lim
N→+∞

λ1,N = λ+,∗ lim
N→+∞

λM,N = λ−,∗ (II.50)

We note that λ−,∗ ≥ a > 0 and λ+,∗ ≤ b where a and b are defined by (I.11). Moreover, sequence (ωN )N≥1 is
assumed to converge weakly towards a probability measure ω∗, which, necessarily, is carried by [λ−,∗, λ+,∗]

Assumption II.5. It is assumed that for each N large enough, it exists a nice constant κ > 0 such that the
eigenvalues (λk,N )k=1,...,M satisfy

|λk,N − λl,N | ≤ κ
(
|k − l|
M

)1/2

(II.51)

for each pair (k, l), 1 ≤ k ≤ l ≤ M , so that the support SN of µN is equal to SN = [0, x+,N ] (see Lemma
7.7 in [33]). Moreover, we add the following condition: for each N large enough,

λ1,N − λk,N ≤ κ
k − 1

M
(II.52)

for some nice constant κ.
• Assumptions on the asymptotic behaviour of matrices depending both of the useful signal and the noise.

Assumption II.6. We recall that (fk,N )k=1,...,M represent the eigenvectors of matrix RN . We consider the
M ×M matrix-valued function positive measure ωRN defined by

ωRN =

M∑
k=1

δλk,N fk,Nf
∗
k,N

and introduce the r × r positive matrix-valued measure γN defined by

dγN (λ) = Θ∗N
(
IL ⊗ dωRN (λ)

)
ΘN (II.53)

Then it is assumed that the sequence (γN )N≥1 converges weakly towards a certain measure γ∗.
It is clear that Assumptions II.4, II.5, II.6 look rather strong (notice however that the assumptions are satisfied
when RN = σ2I for some σ2 > 0). This does not limit the usefulness of the results of Section II because
our goal is to establish that, despite the above strong Assumptions, the number of largest eigenvalues of
R̂f |p,yR̂

∗
f |p,y = ΣfΣ∗pΣpΣ

∗
f that escape from [0, x+,N ] is not at all related to P . Therefore, the conclusion of the

results of Section II is that, even if strong Assumptions hold, the largest eigenvalues of R̂f |p,yR̂∗f |p,y cannot be
used to estimate P consistently.

We now state some consequences of Assumption II.4 and Assumption II.5, which, in some sense, show that
x+,N , w+,N , functions tN (z), wN (z) and measure µN have, when N → +∞, limits that satisfy the same properties
that their finite N equivalents. We recall that w+,N > 0 is defined by w+,N = wN (x+,N ) and verifies x+,N =
φN (w+,N ), φ′N (w+,N ) = 0 and w+,N > λ1,N (we recall that wN and φN are defined by (II.14) and (II.15)).
We omit the proof of the two following Propositions, and refer the reader to the proofs of Proposition 4.1 and
Proposition 4.2 in the Thesis [45].

Proposition II.4. Sequences (w+,N )N≥1 and (x+,N )N≥1 converge towards finite limits w+,∗ and x+,∗ respectively.
Moreover, w+,∗ verifies w+,∗ > λ+,∗. If φ∗(w) is the function defined on C− [λ−,∗, λ+,∗] by

φ∗(w) = (c∗w)2

(∫ λ+,∗

λ−,∗

λ dω∗(λ)

w − λ

)2

+ c∗w
2

∫ λ+,∗

λ−,∗

λ dω∗(λ)

w − λ
(II.54)

then, φN (w)→ φ∗(w) uniformly on the compact subsets of C− [λ−,∗, λ+,∗]. Moreover, it holds that

x+,∗ = φ∗(w+,∗) (II.55)
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The sequence (µN )N≥1 converges weakly towards a probability measure µ∗. The support S∗ of µ∗ is included into
[0, x+,∗], and the Stieltjes transform t∗(z) of µ∗ verifies the equation

t∗(z) =

∫ λ+,∗

λ−,∗

λ

−z(1 + c∗t∗(z)λ
1−z(c∗t∗(z))2 )

dω∗(λ) (II.56)

for each z ∈ C − [0, x+,∗]. Moreover, tN (z) converges uniformly towards t∗(z) on the compact subsets of C −
[0, x+,∗]. If w∗(z) is the function defined on C− [0, x+,∗] by

w∗(z) = c∗zt∗(z)−
1

c∗t∗(z)
(II.57)

then, w∗ is holomorphic on C− [0, x+,∗] and wN (z) converges uniformly towards w∗(z) on the compact subsets
of C− [0, x+,∗]. w∗(z) satisfies

φ∗(w∗(z)) = z (II.58)

for each z ∈ C− [0, x+,∗]. Finally,

lim
x→x+,∗,x>x+,∗

t∗(x) exists, is finite, is still denoted t∗(x+,∗), and Eq. (II.56) holds for z = x+,∗ (II.59)

Moreover, we have
w+,∗ = w∗(x+,∗) (II.60)

We recall that νTN is the M ×M matrix-valued positive measure associated to matrix-valued Stieltjes transform
TN (z), and introduce for each N the r × r matrix-valued measure βN defined by

dβN (λ) = Θ∗N
(
IL ⊗ dνTN (λ)

)
ΘN (II.61)

We notice that νTN (R+) = I implies that βN (R+) = I . Using the identity (II.16), we obtain immediately that the
Stieltjes transform TβN (z) of βN is given by

TβN (z) =
wN (z)

z

∫
dγN (λ)

λ− wN (z)
(II.62)

Then, the following result is a consequence of Assumption II.6.

Proposition II.5. The sequence of measures (βN )N≥1 converges weakly towards a measure β∗ whose support is
included into [0, x+,∗], and which verifies β∗([0, x+,∗]) = β∗(R+) = I . The Stieltjes transform Tβ∗(z) of β∗ is
given by

Tβ∗(z) =
w∗(z)

z

∫ λ+,∗

λ−,∗

dγ∗(λ)

λ− w∗(z)
(II.63)

for each z ∈ C− [0, x+,∗]. Moreover, it holds that

Tβ∗(x+,∗) = lim
x→x+,∗,x>x+,∗

Tβ∗(x) = lim
N→+∞

TβN (x+,N ) =
w+,∗

x+,∗

∫ λ+,∗

λ−,∗

dγ∗(λ)

λ− w+,∗
(II.64)

We finally conclude this paragraph by the following result.

Proposition II.6. Assume that y >
√
x+,∗. Then, for each N large enough, y is not eigenvalue of matrix(

0 Wf,NW
∗
p,N

Wp,NW
∗
f,N 0

)
, and y2 is not eigenvalue of WfW

∗
pWpW

∗
f .

Proof. As y > √x+,∗ and that limN→+∞ x+,N = x+,∗, it exists N0 such that y > √x+,N and y2 > x+,N for
each N ≥ N0. Therefore, y2 does not belong to ∪N≥N0

SN . Theorem 8.1 in [33] thus implies that y2 and y cannot

be one of the eigenvalues of matrices Wf,NW
∗
p,NWp,NW

∗
f,N and

(
0 Wf,NW

∗
p,N

Wp,NW
∗
f,N 0

)
for N ≥ N0

respectively. �
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E. Asymptotic behaviour of the eigenvalues of ΣfΣ∗pΣpΣ
∗
f .

In this paragraph, we characterize the possible eigenvalues of ΣfΣ∗pΣpΣ
∗
f that escape from the interval [0, x+,∗].

For this, for each δ > 0 small enough, we study the positive eigenvalues of
(

0 Σf,NΣ∗p,N
Σp,NΣ∗f,N 0

)
that are almost surely, for N large enough, strictly greater than

√
x+,∗ + δ. We first mention that Theorem

8.1 in [33] implies that the resolvent QW (z) of Wf,NW
∗
p,NWp,NW

∗
f,N and the resolvent QW (z) of matrix(

0 Wf,NW
∗
p,N

Wp,NW
∗
f,N 0

)
are almost surely, for each N large enough, holomorphic in C− [0, x+,N ] and in

C − [−√x+,N ,
√
x+,N ] respectively. Therefore, almost surely, for each N large enough, function FN (z) defined

by (II.49) is holomorphic on C− [−√x+,N ,
√
x+,N ]. As limN→+∞ x+,N = x+,∗, FN (z) is also holomorphic on

C− [−
√
x+,∗ + δ,

√
x+,∗ + δ] for each δ > 0 for N large enough.

We first establish that the sequence of analytic functions (FN (z))N≥1 almost surely converges uniformly on
each compact subset of C − [−√x+,∗,

√
x+,∗] towards a deterministic function F∗(z) which is analtyic in

C − [−√x+,∗,
√
x+,∗]. Adapting the stability results of the zeros of certain analytic functions proved in [6] and

[10], we obtain that for δ small enough, the solutions of the equation det(I + FN (y)) = 0, y >
√
x+,∗ + δ,

converge towards the solutions of the limit equation det(I + F∗(y)) = 0, y > √x+,∗.

In order to study the asymptotic behaviour of FN , we first consider the asymptotic behaviour of matrix
A∗QW,N (pf)B, which is given by

A∗QW,N (pf)B =

(
Θ∗f

∆pΘ̃
∗
pW
∗
f

)
QW,N (pf)

(
Θp,WpΘ̃f∆f

) (
∆pΘ̃

∗
pΘ̃f∆f Ir
Ir 0

)
In order to study matrix A∗QW,N (pf)B when N → +∞, it is necessary to evaluate the asymptotic behaviour of
sesquilinear forms of matrices QW,N (pf), W ∗fQW,N (pf), QW,N (pf)Wp and W ∗fQW,N (pf)Wp. The following
result holds.

Lemma II.1. For each z ∈ C− [−√x+,∗,
√
x+,∗] and for each bounded sequences (aN , bN )N≥1 and (ãN , b̃N ) of

ML–dimensional and N–dimensional deterministic vectors, it holds that
• a∗N QW,N (pf) bN → 0 almost surely
• ã∗N W

∗
f QW,N (pf) bN → 0 almost surely

• a∗N QW,N (pf)Wp b̃N → 0 almost surely
• ã∗N W

∗
f QW,N (pf)Wp b̃N + (cNtN (z))2

1−(cNtN (z))2 ã
∗
N b̃N → 0 almost surely.

Moreover, the convergence is uniform over each compact subset of C− [−√x+,∗,
√
x+,∗] and it holds that, almost

surely

A∗QW,N (pf)B −

(
0 0

− (cNtN (z))2

1−(cNtN (z))2 Γ∗N 0

)
→ 0 (II.65)

the convergence being uniform on compact subsets of C− [−√x+,∗,
√
x+,∗]. Finally, the above properties hold if

aN , bN , ãN , b̃N are random bounded vectors that are independent from the noise sequence (vn)n≥1, i.e. from the
entries of matrices (WN )N≥1.

Sketch of proof. The proof of this result uses ingredients that are very similar to the calculations of Section 5
and Paragraph 6.2 in [33]. We therefore only provide a sketch of proof. When z ∈ C+, the first item follows from
(II.10) and from the observation that (I2L ⊗ TN (z)) (pf) = 0. The convergence for each z ∈ C− [−√x+,∗,

√
x+,∗]

follows from the observation that almost surely, for each δ > 0, functions (a∗N QW,N (pf) bN ) are analytic on
C− [−

√
x+,∗ + δ,

√
x+,∗ + δ] for N large enough. The use of Montel’s theorem allows to prove the almost sure

convergence for each z ∈ C − [−√x+,∗,
√
x+,∗], as well as the uniformity of the convergence on each compact

subset of C− [−√x+,∗,
√
x+,∗]. To establish the second and the third item of Lemma II.1 when z ∈ C+, we first

show that E(W ∗f QW,pf ) = 0 and E(QW,pf Wp) = 0 using the invariance of the distribution of (vn)n∈Z under
the transformation vn → einθvn for each θ, and use the Poincaré-Nash inequality. We finally prove the uniform
convergence on compact subsets of C− [−√x+,∗,

√
x+,∗] using Montel’s theorem. We note that the sequences of

functions defined in item (ii) and (iii) are almost surely bounded on each compact subsets of C− [−√x+,∗,
√
x+,∗]
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because matrices Wf and Wp are almost surely bounded, see (II.3).

We denote by αN (z) and αN (z) the functions defined by

αN (z) = E
(

1

ML
Tr [(IL ⊗RN )QW,N (z)]

)
(II.66)

and
αN (z) = E

(
1

ML
Tr [(IL ⊗RN )QW,N (pp)(z)]

)
(II.67)

We notice that αN (z) = zαN (z2). The proof of the fourth item of Lemma II.1 needs to use the Gaussian calculations
of Section 5 in [33] to establish that

ã∗N W
∗
f QW,N (pf)Wp b̃N +

(cNαN (z))2

1− (cNαN (z))2
ã∗N b̃N → 0 a.s.

for each z ∈ C+. It is proved in Paragraph 5.2 in [33] that αN (z) − tN (z) → 0 for each z ∈ C+. As αN (z) =
zαN (z2) and tN (z) = ztN (z2), this implies that αN (z)−tN (z)→ 0 if Arg(z) ∈]0, π/2[. This convergence domain
can be extended to C+ using classical arguments based Montel’s theorem. From this, we deduce immediately that

(cNαN (z))2

1− (cNαN (z))2
− (cNtN (z))2

1− (cNtN (z))2
→ 0

for each z ∈ C+, and that, for each z ∈ C+,

ã∗N W
∗
f QW,N (pf)Wp b̃N +

(cNtN (z))2

1− (cNtN (z))2
ã∗N b̃N → 0, a.s. (II.68)

Matrices Wf and Wp are almost surely bounded. Therefore, for each δ > 0, ã∗N W
∗
f QW,N (pf)Wp b̃N

and (cNtN (z))2

1−(cNtN (z))2 are analytic on C − [−
√
x+,∗ + δ,

√
x+,∗ + δ] and bounded on each compact subset of

C − [−√x+,∗,
√
x+,∗]. Montel’s theorem thus implies that (II.68) holds for each z ∈ C − [−√x+,∗,

√
x+,∗].

Moreover, the convergence is uniform on each compact subset of C− [−√x+,∗,
√
x+,∗].

We now assume that aN , bN , ãN , b̃N are random bounded vectors independent from the (vn)n≥1, and just verify
that a∗NQW,N (pf)bN → 0 almost surely still holds. We denote by (Ωa,b,Pa,b) and (Ωv,Pv) the probability
spaces on which (aN , bN )N≥1 and the random variables (vn)n≥1 are defined. We consider the event A on which
a∗NQW,N (pf)bN does not converge towards zero, and justify that P(A) = 0 where P = Pa,b⊗Pv . For each element
ωa,b ∈ Ωa,b, we denote by Aωa,b the event

Aωa,b = {ωv ∈ Ωv, (ωa,b, ωv) ∈ A}

Then, the Fubini theorem leads to
P(A) =

∫
Ωa,b

P(Aωa,b)Pa,b(dωa,b) (II.69)

As the sequence of realizations (aN (ωa,b))N≥1 and (bN (ωa,b))N≥1 are bounded vectors, item (i) implies that
a∗N (ωa,b)QW,N (pf)bN (ωa,b)→ 0 almost surely, or equivalently, P(Aωa,b) = 0. (II.69) leads to the conclusion that
P(A) = 0 as expected.

(II.65) is an immediate consequence of the statements of items (i) to (iv) and their generalization to the context of
random vectors (aN , bN , ãN , b̃N ) (because the columns of Θi,N , Θ̃i,N are bounded random vectors for i = p, f
and the entries of ∆i,N are bounded random variables), as well as of Condition (II.33) which implies that r × r
diagonal matrices ∆p,N and ∆f,N (resp. orthogonal ML× r matrices Θf,N and Θp,N ) have the same asymptotic
behaviour than matrix ∆N (resp. matrix ΘN ). �

Using the same kind of arguments as in the proof of Lemma II.1, it is possible to establish the following result.

Proposition II.7. For each z ∈ C− [−√x+,∗,
√
x+,∗], it holds that

A∗QW,N (pp)A−

 −Θ∗N

(
zI + cNtN (z)

1−(cNtN (z))2 IL ⊗RN
)−1

ΘN 0

0 cNtN (z)
1−(cNtN (z))2 ∆2

N

→ 0 a.s. (II.70)
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B∗QW,N (ff)B −
(

Γ∗N I
I 0

) (
−Θ∗N

(
zI + cNtN (z)

1−(cNtN (z))2 IL ⊗RN
)−1

ΘN 0

I 0

) (
ΓN I
I 0

)
→ 0 a.s.

(II.71)

B∗QW,N (ff)A−

(
0 − (cNtN (z))2

1−(cNtN (z))2 ΓN
0 0

)
→ 0 a.s. (II.72)

The convergence is moreover uniform on each compact subset of C− [−√x+,∗,
√
x+,∗].

Lemma II.1 and Proposition II.7 imply that for each z ∈ C− [−√x+,∗,
√
x+,∗], almost surely, matrix FN (z) has

the same asymptotic behaviour than the 4r × 4r matrix Fd,N (z) defined by

Fd,N (z) =

(
F 11
d,N (z) F 1,2

d,N (z)

F 2,1
d,N (z) F 2,2

d,N (z)

)
(II.73)

where the 2r × 2r blocks of Fd,N (z) are characterized in Lemma II.1 and in Proposition II.7. The assumptions
formulated in Paragraph II-D imply that matrix Fd,N (z) converges for each z ∈ C − [−√x+,∗,

√
x+,∗] towards

a limit F∗(z), the convergence being uniform on each compact subset of C − [−√x+,∗,
√
x+,∗]. More precisely,

tN (z) converges towards t∗(z) uniformly on each compact subset of C − [0, x+,∗], which implies that tN (z) =
ztN (z2) converges uniformly on each compact subset of C − [−√x+,∗,

√
x+,∗] towards t∗(z) = zt∗(z

2). We

notice that matrix −
(
zI + cNtN (z)

1−(cNtN (z))2 IL ⊗RN
)−1

coincides with matrix IL ⊗ TN (z) = IL ⊗ zTN (z2) =

z
∫ x+,N

0
IL⊗dνTN (λ)

λ−z2 . We denote by TβN (z) the function defined by TβN (z) = zTβN (z2), which can also be written
as

Θ∗N (IL ⊗TN (z))ΘN = TβN (z)

and which, by (I.18), coincides with the Stieltjes transform of a positive matrix-valued measure carried by
[−√x+,N ,

√
x+,N ]. Proposition II.5 implies that TβN (z) converges uniformly on each compact subset of

C \ [−√x+,∗,
√
x+,∗] towards the r × r matrix Tβ∗(z) defined by

Tβ∗(z) = zTβ∗(z
2) (II.74)

where we recall that Tβ∗(z) =
∫ x+,∗

0
dβ∗(λ)
λ−z is the Stieltjes transform of the positive matrix-valued measure β∗. Tβ∗

is an element of Sr(R), its associated positive measure, denoted β∗, is carried by [−√x+,∗,
√
x+,∗], and verifies

β∗([−
√
x+,∗,

√
x+,∗]) = β∗(R) = I because β∗([0, x+,∗] = β∗(R+) = I (see (I.18) and (I.19)). All this imply that

F
(1,1)
d,N (z) =

(
0 0

− (cNtN (z))2

1−(cNtN (z))2 Γ∗N 0

)
→ F 1,1

∗ (z) =

(
0 0

− (c∗t∗(z))
2

1−(c∗t∗(z))2
Γ∗∗ 0

)

F
(1,2)
d,N (z) =

(
TβN (z) 0

0 cNtN (z)
1−(cNtN (z))2 ∆2

N

)
→ F 1,2

∗ (z) =

(
Tβ∗(z) 0

0 c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗

)

F 2,1
d,N (z) =

(
ΓN I
I 0

)
F 1,2
d,N (z)

(
Γ∗N I
I 0

)
→ F 2,1

∗ (z) =

(
Γ∗ I
I 0

)
F 1,2
∗ (z)

(
Γ∗∗ I
I 0

)

F 2,2
d,N (z) =

(
0 − (cNtN (z))2

1−(cNtN (z))2 ΓN
0 0

)
→ F 2,2

∗ (z) =

(
0 − (c∗t∗(z))

2

1−(c∗t∗(z))2
Γ∗

0 0

)
where we recall that Γ∗ is defined by Assumption II.3. The previous results show that (FN (z))N≥1 converge
uniformly towards F∗(z) over each compact subset of C − [−√x+,∗,

√
x+,∗]. It is thus reasonable to expect that

for δ > 0 small enough, the solutions of the equation det(I+FN (y)) = 0 satisfying y >
√
x+,∗ + δ will converge

towards the roots of det(I + F∗(y)) = 0 satisfying y > √x+,∗.
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We now study the solutions of det(I +F∗(y)) = 0, y > √x+,∗ . For y > √x+,∗, we express in a more convenient
manner the equation det(I + F∗(y)) = 0. This equation holds if and only

det

((
I 0
0 Ω∗

)
(I + F∗(y))

(
Ω∗∗ 0
0 I

))
= 0 (II.75)

where

Ω∗ =

(
Γ∗ I
I 0

)−1

=

(
0 I
I −Γ∗

)
The matrix whose determinant vanishes in (II.75) is equal to

0 I Tβ∗(z) 0

I − Γ∗∗
1−(c∗t∗(z))2

0 cNt∗(z)
1−(c∗t∗(z))2

∆2
∗

Tβ∗(z) 0 0 I

0 c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗ I − Γ∗

1−(c∗t∗(z))2

 (II.76)

As the lower diagonal 2r×2r block of this matrix is invertible, its determinant is 0 if and only the determinant of its
Schur complement is 0. After some calculations, we obtain that det(I+F∗(y)) = 0 if and only if det(I−K∗(y)) = 0
where K∗(z) is the 2r × 2r matrix-valued function defined for each z ∈ C− [−√x+,∗,

√
x+,∗] by

K∗(z) =

(
c∗t∗(z)

1−(c∗t∗(z))2
∆2
∗Tβ∗(z)

Γ∗∗
1−(c∗t∗(z))2

Tβ∗ (z) Γ∗Tβ∗ (z)
1−(c∗t∗(z))2

c∗t∗(z)
1−(c∗t∗(z))2

Tβ∗(z) ∆2
∗

)
(II.77)

K∗(z) can be factorized as

K∗(z) =

(
I 0
0 Tβ∗(z)

)( c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗

Γ∗∗
1−(c∗t∗(z))2

Γ∗
1−(c∗t∗(z))2

c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗

)(
Tβ∗(z) 0

0 I

)
For each y > √x+,∗, Tβ∗(y) can be written as

Tβ∗(y) =

∫ √x+,∗

−√x+,∗

dβ∗(λ)

λ− y

and verifies Tβ∗(y) ≤ − 1√
x+,∗+y

β∗([−
√
x+,∗,

√
x+,∗]) = − I√

x+,∗+y
because we recall that

β∗([−
√
x+,∗,

√
x+,∗]) = β∗(R) = I . Therefore, Tβ∗(y) is negative definite, and thus invertible. Hence,

det(I −K∗(y)) = 0 if and only

det

((
c∗t∗(y)

1−(c∗t∗(y))2 ∆2
∗

Γ∗∗
1−(c∗t∗(y))2

Γ∗
1−(c∗t∗(y))2

c∗t∗(y)
1−(c∗t∗(y))2 ∆2

∗

)
−
(

(Tβ∗(y))−1 0
0 (Tβ∗(y))−1

))
= 0 (II.78)

In the following, we denote by H∗(z) the 2r × 2r matrix-valued function defined on C− [
√
x+,∗,

√
x+,∗] by

H∗(z) =

(
c∗t∗(z))

1−(c∗t∗(z))2
∆2
∗ − (Tβ∗(z))

−1 Γ∗∗
1−(c∗t∗(z))2

Γ∗
1−(c∗t∗(z))2

c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗ − (Tβ∗(z))

−1

)
(II.79)

H∗(z) is of course holomorphic on C− [−√x+,∗,
√
x+,∗], and the solutions of det(I + F∗(y)) = 0, y > √x+,∗,

coincide with the solutions of
det (H∗(y)) = 0 (II.80)

where y > √x+,∗. In order to characterize the roots of (II.80), we first establish the following Proposition.

Proposition II.8. For each z ∈ C+, Im(H∗(z)) > 0, and function y → H∗(y) is increasing in the sense of the
partial order defined on the set of all Hermitian matrices on the interval [

√
x+,∗,+∞[.

Proof. As β∗(R) = I , Im(Tβ∗(z)) is positive definite for z ∈ C+ and Im
(
(Tβ∗(z))

−1
)
< 0. Therefore, in order

to establish that Im(H∗(z)) > 0 on C+, it is sufficient to prove that Im(H∗,1(z)) > 0 on C+ where H∗,1(z) is the
function defined by

H∗,1(z) =

(
c∗t∗(z)

1−(c∗t∗(z))2
∆2
∗

Γ∗∗
1−(c∗t∗(z))2

Γ∗
1−(c∗t∗(z))2

c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗

)
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After some calculations, we obtain that

Im(H∗,1(z)) =
1

|1− (c∗t∗(z))2|2

(
Im(c∗t∗(z))(1 + |c∗t∗(z)|2)∆2

∗ Im
(
(c∗t∗(z))

2
)

Γ∗∗
Im
(
(c∗t∗(z))

2
)

Γ∗ Im(c∗t∗(z))(1 + |c∗t∗(z)|2)∆2
∗

)
It is clear that Im(c∗t∗(z))(1 + |c∗t∗(z)|2)∆2

∗ > 0. Therefore, Im(H∗,1(z)) > 0 if and only if

Im(c∗t∗(z))(1 + |c∗t∗(z)|2)∆2
∗ −

[
Im
(
(c∗t∗(z))

2
)]2

Im(c∗t∗(z))(1 + |c∗t∗(z)|2)
Γ∗∗∆

−2
∗ Γ∗ > 0

or equivalently, if and only if

I −
[
Im
(
(c∗t∗(z))

2
)]2

[Im(c∗t∗(z))(1 + |c∗t∗(z)|2)]
2 ∆−1
∗ Γ∗∗∆

−2
∗ Γ∗∆

−1
∗ > 0 (II.81)

We first claim that ∆−1
∗ Γ∗∗∆

−2
∗ Γ∗∆

−1
∗ ≤ I . To verify this, we notice that for each N , matrix ∆−1

N Γ∗N∆−2
N ΓN∆−1

N

coincides with Θ̃∗f,N Θ̃p,N Θ̃∗p,N Θ̃f,N which is less than I . Therefore,

lim
N→+∞

∆−1
N Γ∗N∆−2

N ΓN∆−1
N = ∆−1

∗ Γ∗∗∆
−2
∗ Γ∗∆

−1
∗ ≤ I

[Im((c∗t∗(z))
2)]

2

[Im(c∗t∗(z))(1+|c∗t∗(z)|2)]2
is equal to [

Im
(
(c∗t∗(z))

2
)]2

[Im(c∗t∗(z))(1 + |c∗t∗(z)|2)]
2 =

4 [Re(c∗t∗(z))]
2

(1 + |c∗t∗(z)|2)2

For z ∈ C+, Im(t∗(z)) > 0. Therefore, it holds that (Re(c∗t∗(z)))
2
< |c∗t∗(z)|2 and that[

Im
(
(c∗t∗(z))

2
)]2

[Im(c∗t∗(z))(1 + |c∗t∗(z)|2)]
2 <

4|c∗t∗(z)|2

(1 + |c∗t∗(z)|2)2
≤ 1

This establishes (II.81) and Im(H∗(z)) > 0. �

We now prove that y → H∗(y) is increasing on the interval [
√
x+,∗,+∞[. For this, we use the following

representation of holomorphic matrix-valued functions whose imaginary part is positive on C+ (see e.g. [19]):

H∗(z) = A+Bz +

∫
1 + λz

λ− z
dσ(λ)

1 + λ2
(II.82)

where A is Hermitian, B ≥ 0 and σ is a positive matrix-valued measure for which

Tr

(
dσ(λ)

1 + λ2

)
< +∞

B = limy→+∞
H∗(iy)
iy is easily seen to be equal to

B = lim
y→+∞

(
−Tβ∗ (iy)

iy 0

0 −Tβ∗ (iy)
iy

)
= I2r

while for any interval [y1, y2], it holds that

σ([y1, y2]) =
1

π
lim
ε→0

∫ y2

y1

Im(H∗(y + iε))dy

As Im(H∗(y)) = 0 if |y| > √x+,∗, the support of σ is included into [−√x+,∗,
√
x+,∗]. Therefore, we get

immediately from (II.82) that y → H∗(y) is strictly increasing on ]
√
x+,∗,+∞], i.e. H∗(y2) > H∗(y1) if y2 > y1.

We also notice that the last item of Proposition II.4 as well as Proposition II.5 imply that limy→√x+,∗ H∗(y) =
H∗(
√
x+,∗) exists and is finite. Moreover, it holds that H∗(

√
x+,∗) < H∗(y) for y > √x+,∗.

Corollary II.1. The eigenvalues (arranged in the decreasing order) (λk,∗(y))k=1,...,2r of matrix H∗(y) are strictly
increasing functions of y on [

√
x+,∗,+∞[, i.e., for each k = 1, . . . , 2r, it holds that

λk,∗(y1) < λk,∗(y2) if √x+,∗ ≤ y1 < y2 (II.83)
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Moreover, the number s of solutions of (II.80) (taking into account their multiplicities) for which y >
√
x+,∗

belongs to {0, 1, . . . , 2r}, and coincides with the number of strictly negative eigenvalues of matrix H∗(
√
x+,∗).

Proof. We have shown that if √x+,∗ ≤ y1 < y2, then H∗(y1) < H∗(y2). The Weyl’s inequalities (see e.g.
[26], Paragraph 4.3) thus imply that (II.83) holds. Moreover, as matrix B in (II.82) is equal to I2r, it is clear
that for each k = 1, . . . , 2r, λk,∗(y) converges towards +∞ when y → +∞. For k = 1, . . . , 2r, the equation
λk,∗(y) = 0 has thus 1 solution y >

√
x+,∗ if λk,∗(x+,∗) < 0 and no solution if λk,∗(x+,∗) ≥ 0. (II.80)

holds if and only if one of the eigenvalues of H∗(y) is equal to 0. Therefore, if we denote by s̃ the number of
positive eigenvalues of H∗(

√
x+,∗), for j = 1, . . . , s̃, it must hold that λj,∗(y) > 0 for y > √x+,∗. Moroever,

λs̃+1,∗(
√
x+,∗) < 0 implies that the equation λs̃+1,∗(y) = 0 has a unique solution y1,∗ >

√
x+,∗. Similarly, the

equation λs̃+2,∗(y) = 0 has a unique solution denoted y2,∗. Moreover, as λs̃+2,∗(y) ≤ λs̃+1,∗(y) for each y, we
deduce that λs̃+2,∗(y1,∗) ≤ λs̃+1,∗(y1,∗) = 0. If λs̃+2,∗(y1,∗) < 0, y2,∗ must be strictly greater than y1,∗. As
a root of (II.80), y1,∗ has thus multiplicity 1. If λs̃+2,∗(y1,∗) = 0, the multiplicity of y1,∗ as a root of (II.80)
is at least equal to 2. Iterating the process, we obtain that the number of solutions s (taking into account the
multiplicities) of (II.80) is equal to s = 2r− s̃. Moreover, solutions y1,∗, . . . , ys,∗ satisfy y1,∗ ≤ y2,∗ ≤ . . . ≤ ys,∗. �

Corollary II.1 implies that Eq. det(I + F∗(y)) = 0 has s (0 ≤ s ≤ 2r) solutions (yk,∗)k=1,...,s strictly greater than√
x+,∗. We recall that, almost surely, the sequence of functions (FN (z))N≥1 converges uniformly on each compact

subset of C− [−√x+,∗,
√
x+,∗] towards F∗(z). We now take benefit of the arguments used in [6], Lemma 6.1 and

in the proof of Theorem 2.1 in [10] to derive the following result.

Corollary II.2. For each δ > 0 small enough, almost surely, for N large enough, Eq. det(I + FN (y)) = 0
has s solutions y1,N ≤ y2,N . . . ≤ ys,N such that yk,N >

√
x+,∗ + δ, and for each k = 1, . . . , s, it holds that

limN→+∞ yk,N = yk,∗.

Proof. We just provide a sketch of proof because we follow the arguments in [6] and [10]. In order to simplify
the exposition, we assume that y1,∗ < . . . < ys,∗, but the following arguments can be extended immediately to the
case where some (yk,∗)k=1,...,s coincide. We first justify that almost surely, for N large enough, the solutions of
det(I +FN (y)) = 0, y >

√
x+,∗ + δ are bounded by a nice constant. To verify this, we remark that (II.3) implies

that it exists a nice constant κ for which, almost surely, ‖AN‖ ≤ κ and ‖BN‖ ≤ κ for each N large enough.
We recall that AN and BN are defined by (II.43) and (II.44). Moreover, for y >

√
x+,∗ + δ, the inequality

‖QW (y)‖ ≤ 1

y−
√
x+,∗+δ

holds. Therefore, matrix FN (y) verifies ‖FN (y)‖ < κ

y−
√
x+,∗+δ

for some nice constant

κ, and all the eigenvalues of FN (y) satisfy |λj(FN (y))| ≤ κ

y−
√
x+,∗+δ

, for j = 1, . . . , 2r. For y larger than a nice

constant ymax, det(I4r +FN (y)) cannot therefore vanish. This implies that almost surely, for N large enough, the
solutions of det(I + FN (y)) = 0, y >

√
x+,∗ + δ belong to (

√
x+,∗ + δ, ymax). We choose δ in such a way that√

x+,∗ + δ < y1,∗. We consider any open interval (a1, a2) such that (a1, a2) ⊂ (
√
x+,∗ + δ,max(ymax, ys,∗) + δ)

and ai 6= yk,∗ for i = 1, 2 and k = 1, . . . , s. Then, using the arguments in the proof of Theorem 2.1 in [10], we
obtain that the equations det(I+FN (y)) = 0 and det(I+F∗(y)) = 0 have the same number of solutions located in
(a1, a2). Choosing (a1, a2) = (

√
x+,∗ + δ,max(ymax, ys,∗) + δ) leads to the conclusion that det(I +FN (y)) = 0

has s solutions y1,N , . . . , ys,N larger than
√
x+,∗ + δ. We fix k ∈ {1, 2, . . . , s} and establish that yk,N → yk,∗.

For this, we choose ε > 0 arbitrarily small, and choose (a1, a2) = (yk,∗ − ε, yk,∗ + ε). Then, [10] implies that
almost surely, for N large enough, det(I + FN (y)) = 0 has 1 solution yk,N in (yk,∗ − ε, yk,∗ + ε), and that
|yk,N − yk,∗| < ε. This is equivalent to limN→+∞ yk,N = yk,∗ as expected. �.

Remark II.1. We notice that the existence of the limits ∆∗,Γ∗, t∗, β∗ introduced in the various Assumptions of
Section II allows to establish that FN (z) converges towards the deterministic and independent of N function
F∗(z), and to prove that the solutions of det(I + FN (y)) = 0 larger than

√
x+,∗ + δ converge towards the

corresponding solutions of det(I +F∗(y)) = 0. If the above limits are not supposed to exist, we can just establish
that FN (z) has the same asymptotic behaviour that the term Fd,N (z) introduced in (II.73). As Fd,N (z) depends
on N , it is not possible to adapt the arguments in the proof of Theorem 2.1 in [10] to establish rigorously that the
solutions of det(I +FN (y)) = 0 larger than √x+,N have the same behaviour than the corresponding solutions of
det(I +Fd,N (y)) = 0. However, the existence of ∆∗,Γ∗, t∗, β∗ can be considered as purely technical assumptions
that allow to derive well founded mathematical results. In particular, even if the limits are not supposed to exist, in
practice, for N large enough, the eigenvalues of Σf,NΣ∗p,NΣp,NΣ∗f,N that escape from [0, x+,N ] should be close
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from the solutions of det(I + Fd,N (y)) = 0 larger than x+,N in a number of scenarios. However, the derivation
of reasonable alternative conditions under which this behaviour holds seems difficult.

We have thus established the Theorem:

Theorem II.1. Almost surely, for each N large enough, the s largest eigenvalues λ̂1,N ≥ . . . ≥ λ̂s,N of matrix
Σf,NΣ∗p,NΣp,NΣ∗f,N escape from the interval [0, x+,∗], and converge towards ρ1,∗ ≥ . . . ≥ ρs,∗ > x+,∗ defined by
ρk,∗ = y2

s+1−k,∗ for k = 1, . . . , s. Moreover, for each δ > 0, the eigenvalues (λ̂k,N )k≥s+1 belong to [0, x+,∗ + δ].

s and the limit eigenvalues (ρk,∗)k=1,...,s depend on the limit distributions ω∗ and β∗ that are rather immaterial.
It is thus more appropriate to evaluate the asymptotic behaviour of the largest eigenvalues of Σf,NΣ∗p,NΣp,NΣ∗f,N
by using a finite N equivalent of H∗(z). We thus define function HN (z) by

HN (z) =

(
cNtN (z))

1−(cNtN (z))2 ∆2
N − (TβN (z))−1 Γ∗N

(1−(cNtN (z))2

ΓN
(1−(cNtN (z))2

cNtN (z)
1−(cNtN (z))2 ∆2

N − (TβN (z))−1

)
(II.84)

For each N large enough and for each δ > 0, HN (z) is holomorphic in C−[−
√
x+,∗ + δ,

√
x+,∗ + δ] and converges

uniformly on each compact subset of C− [−√x+,∗,
√
x+,∗] towards function H∗(z). Using again the approach of

[6] and [10], we obtain that, for each N large enough, the equation det(HN (y)) = 0 has s solutions y1,N,∗ ≤
. . . ≤ ys,N,∗ strictly larger than

√
x+,N + δ for some δ > 0 small enough, and which satisfy yk,N,∗ − yk,∗ → 0

when N → +∞. Moreover, the convergence of x+,N and w+,N towards x+,∗ = φ∗(w+,∗) and w+,∗ = w∗(x+,∗)
imply that tN (x+,N ) converge towards t∗(x+,∗). Therefore, (II.64) leads to the following Corollary.

Corollary II.3. HN (
√
x+,N ) converges towards H∗(

√
x+,∗). Moreover, if det(H∗(

√
x+,∗)) 6= 0, for N large

enough, s also coincides with the number of strictly negative eigenvalues of matrix HN (
√
x+,N ). Finally, if we

define ρk,N by ρk,N = y2
s+1−k,N,∗ for k = 1, . . . , s , then it holds that λ̂k,N − ρk,N → 0 almost surely.

Proof. It just remains to remark that if 0 is not eigenvalue of H∗(
√
x+,∗), then, for each N large enough, s is

equal to the number of strictly negative eigenvalues of matrix HN (
√
x+,N ). �

Matrix HN (
√
x+,N ) can be written in a more explicit way, so that s can be evaluated using the following alternative

formulation.

Corollary II.4. Define GN as the r × r matrix given by

GN =
cNw+,N√
x+,N

1

M
Tr(RN (w+,NI −RN )−1)

[(
Θ∗N (IL ⊗ (w+,NI −RN )−1)ΘN

)−1 −∆2
N

]
(II.85)

Then, if det(H∗(
√
x+,∗)) 6= 0, for each N large enough, s coincides with the number of strictly negative eigenvalues

of the 2r × 2r matrix (
GN Γ∗N
ΓN GN

)
(II.86)

Proof. Writing tN (z) as tN (z) = ztN (z2), and using the expression (II.17) of tN (z) in terms of wN (z), we obtain
after some algebra that matrix HN (

√
x+,N ) is given by

HN (
√
x+,N ) =

(
1 + cN

1

M
Tr(RN (w+,NI −RN )−1)

) (
GN Γ∗N
ΓN GN

)
(II.87)

As w+,N > λ1,N , we have 1
MTr(RN (w+,NI − RN )−1 > 0 and 1 + cN

1
MTr(RN (w+,NI − RN )−1) > 0. s thus

coincides with the number of strictly negative eigenvalues of (II.86). �

F. When Condition (II.33) does not hold.

We now consider the case where Condition (II.33) does not hold, and briefly indicate how the above results have
to be modified. For this, we denote by k the number of different diagonal entries of ∆∗ and by m1, . . . ,mk their
multiplicities, which also coincide with the multiplicities of the k different eigenvalues of matrices ΘN∆∗Θ

∗
N and

Θi,N∆∗Θ
∗
i,N for i = p, f . If (ΘN (l))l=1,...,k and (Θi,N (l))l=1,...,k represent the ML×ml matrices for defined by

ΘN = (ΘN (1), . . . ,ΘN (k)) and Θi,N = (Θi,N (1), . . . ,Θi,N (k)), then, (II.36) and standard results of perturbation
theory imply that

‖Θi,N (l)Θi,N (l)∗ −ΘN (l)ΘN (l)∗‖ → 0 (II.88)
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for each l = 1, . . . , k. We denote by Xi,N (l) the ml ×ml random matrix defined by Xi,N (l) = ΘN (l)∗Θi,N (l),
and deduce from (II.88) that

‖Θi,N (l)−ΘN (l)Xi,N (l)‖ → 0 (II.89)

as well as

Xi,N (l)∗Xi,N (l)− Iml → 0, Xi,N (l)Xi,N (l)∗ − Iml → 0 (II.90)

Therefore, matrix Θi,N can be replaced up to error terms by matrix ΘNXi,N where Xi,N represents the r × r
block diagonal matrix with diagonal blocks Xi,N (1), . . . , Xi,N (k). It is useful to notice that the very definition of
Xi,N implies that the equality

Xi,N∆∗ = ∆∗Xi,N (II.91)

holds. Another consequence of (II.90) is related to the asymptotic behaviour of matrix ΓN . In particular, (II.39)
does no longer hold, and we rather have

ΓN −X−1
f,NΓ∗X

−∗
p,N → 0 a.s. (II.92)

To justify (II.92), we notice that (II.25) leads to

Θ∗NR
L
f |p,NΘN −Θ∗NΘf,N∆N Θ̃∗f,N Θ̃p,N∆NΘ∗p,NΘN → 0

Therefore, (II.89) leads to

Xf,NΓNX
∗
p,N − Γ∗ → 0

and to (II.92). Therefore, ΓN does not converge towards a deterministic matrix, and rather behaves as the random
matrix X−1

f,NΓ∗X
−∗
p,N . Moreover, the reader may check that the convergence results (II.70) and (II.71) have to be

modified as follows: in (II.70), matrix

Θ∗N

(
zI +

cNtN (z)

1− (cNtN (z))2
IL ⊗RN

)−1

ΘN = TβN (z)

has to be replaced by X∗f,NTβN (z)Xf,N while in (II.71), TβN (z) has to be exchanged with X∗p,NTβN (z)Xp,N .
Matrix Fd,N is thus modified. The modified matrix, still denoted Fd,N (z), does no longer converge towards matrix
F∗(z) introduced after Proposition II.7, but appears to have almost surely the same asymptotic behaviour than the
random matrix F∗,N (z) obtained by replacing ΓN by X−1

f,NΓ∗X
−∗
p,N , and Tβ∗ in the definitions of F 1,2

∗ (z) and
F 2,1
∗ (z) by X∗f,NTβ∗(z)Xf,N and X∗p,NTβ∗(z)Xp,N respectively. However, after some algebra, it is easily seen

that det(I + F∗,N (z)) = 0 if and only if det(I −K∗,N (z)) = 0, where K∗,N is defined by

K∗,N (z) =

 c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗X
∗
p,NTβ∗(z)Xp,N

X−1
p,NΓ∗∗X

−∗
f,N

(1−(c∗t∗(z))2

X∗f,NTβ∗ (z) Γ∗Tβ∗ (z)Xp,N
1−(c∗t∗(z))2

c∗t∗(z)
1−(c∗t∗(z))2

X∗f,NTβ∗(z)Xf,N ∆2
∗

 (II.93)

Using (II.90) and (II.91), we obtain that(
Xp,N 0

0 Xf,N

)
(I −K∗,N (z))

(
X∗p,N 0

0 X∗f,N

)
→ I −K∗(z) (II.94)

where K∗(z) is defined by (II.77). The solutions y >
√
x+,∗ of the equation det(I − K∗(y)) = 0 are the

(yk,∗)k=1,...,s introduced in Section II-E. Using the arguments in [6] and [10], we obtain from (II.94) that for
δ > 0 small enough, the equation det(I −K∗,N (y)) = 0, or equivalently the equation det(I + F∗,N (y)) = 0 has
s solutions (yk,N,∗)k=1,...,s larger than

√
x+,∗ + δ and verifying yk,N,∗ → yk,∗ for each k = 1, . . . , s. [6] and

[10] imply that the equations det(I + Fd,N (y)) = 0 and det(I + FN (y)) = 0 have also s solutions larger than√
x+,∗ + δ and converging almost surely towards the (yk,∗)k=1,...,s. This, in turn, shows that Theorem II.1 remains

still valid when condition (II.33) does not hold.
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G. Particular cases and examples
In order to get some insights on the number of eigenvalues s that escape from SN = [0, x+,N ] for each N large
enough, we first study informally the behaviour of s when cN → 0. Intuitively, we should recover the results
corresponding to the traditional regime, i.e. that s = P . For this, we use Corollary II.4 and remark that w+,N ,
which depends on cN , satisfies φ

′

N (w+,N ) = 0. Using φ
′

N (w+,N ) = 0 and following the proof of Proposition
7.7 in [33] for w0 = w+,N until Eq. (7.59), we obtain that 1

MTr(RN (w+,NI − RN )−1) < 1. As RN > aI (see
Assumption (I.11)), we obtain that

1

M

M∑
k=1

1

w+,N − λk,N
<

1

a

holds for each cN . This implies that lim infcN→0 w+,N − λ1,N > 0, and that matrix(
Θ∗N (IL ⊗ (w+,NI −RN )−1)ΘN

)−1
remains bounded when cN → 0. As x+,N = φN (w+,N ), it is easy

to check that x+,N = O(cN ). Therefore, cNw+,N√
x+,N

= O(
√
cN ), and GN → 0 when cN → 0. Therefore, when

cN → 0,

HN (
√
x+,N )→

(
0 Γ∗N

ΓN 0

)
As mentioned previously, matrix ΓN has rank P ≤ r. Therefore, the eigenvalues of matrix

(
0 Γ∗N

ΓN 0

)
are 0

with mutiplicity 2(r−P ), (χk)k=1,...,P and −(χk)k=1,...,P where we recall that (χk)k=1,...,P represent the P non
zero singular values of matrix ΓN . Therefore, when cN → 0, s converges towards P . This is in accordance with the
traditional asymptotic regime where N → +∞ and M is fixed. Indeed, in this context, matrix Σf,NΣ∗p,NΣp,NΣ∗f,N

converges towards the rank P matrix RLf |p

(
RLf |p

)∗
, i.e. for N large enough, matrix Σf,NΣ∗p,NΣp,NΣ∗f,N has P

eigenvalues that are significantly larger the M − P smallest ones.

When cN does not converge towards 0, the presence of matrix GN in the expression (II.87) in general
deeply modifies the value of s. In particular, the value of s depends on the singular values (χk,N )k=1,...,P

of matrix ΓN , but also on the diagonal entries (δ2
k,N )k=1,...,r of matrix ∆2

N , or equivalently, on the non
zero eigenvalues of RLu,N = E(uLnu

∗L
n ). In contrast with the context of the usual spiked empirical covariance

matrix models, s may be larger than the number P of non zero eigenvalues of the true matrix Rf |pR
∗
f |p.

This implies that if cN is not small enough, then estimating the rank P of matrix Rf |pR
∗
f |p by the number

s of eigenvalues of Σf,NΣ∗p,NΣp,NΣ∗f,N that escape from [0, x+,N ] does not lead to a consistent estimation scheme.

We now construct explicit examples where RN = σ2IM for some σ2 > 0, P = L = 1 and for which s does not
coincide with P = 1. In particular, we now establish that for each r ≥ 2, there exists useful signals u for which
Rank(R1

u,N ) = Rank(E(unu
∗
n)) = r and s = 2r−1. Moreover, we show that the non zero eigenvalues of R1

u,N as
well as the non zero singular value of R1

f |p,N can be arbitrarily large. In the following, matrices R1
u,N and R1

f |p,N will
be denoted Ru,N and Rf |p,N . We define K = r−1 and we consider a M×r matrix ΘN = (CN , D1,N , . . . , DK,N )
verifying Θ∗NΘN = Ir and a K–dimensional white noise sequence (in)n∈Z verifying E(ini

∗
n) = IK . If 0 ≤ a < 1

and b1, . . . , bK are real numbers, we define the signal (un)n∈Z by

xn+1 = a xn +

K∑
k=1

bk ik,n

un = CN xn +

K∑
k=1

δk+1Dk,N ik,n (II.95)

where δ2, . . . , δr are strictly positive real numbers. As the state-space sequence is 1–dimensional, P coincides with
1. We denote by δ1 the positive real number such that

E(|xn|2) =

∑K
k=1 b

2
k

1− a2
= δ2

1

Then, if we denote by ∆2 the r × r diagonal matrix Diag(δ2
1 , . . . , δ

2
r), we obtain immediately that

Ru,N = ΘN∆2Θ∗N = δ2
1 CNC

∗
N +

K∑
k=1

δ2
k+1Dk,ND

∗
k,N
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coincides with the eigenvalue/ eigenvector decomposition of Ru,N . We observe that the eigenvalues (δ2
k)k=1,...,r do

not depend on N . Therefore, matrix ∆N coincides for each N with ∆ = ∆∗. The matrix Rf |p,N = E(un+1u
∗
n) is

given by

Rf |p,N = CN

(
aδ2

1 C
∗
N +

K∑
k=1

bkδk+1D
∗
k,N

)
Therefore, Rf |p,N can we written as

Rf |p,N = ΘNΓ∗Θ
∗
N

where Γ∗ = Θ∗NRf |p,NΘN is equal to

Γ∗ = e1 (aδ2
1 , b1δ2, . . . , bKδK+1) = χΥ Υ̃∗

where e1 is the first vector of the canonical basis of Cr, Υ = e1, χ =
(
aδ2

1)2 +
∑K
k=1(bkδk+1)2

)1/2

and Υ̃ is the

unit norm vector Υ̃ = 1
χ (aδ2

1 , b1δ2, . . . , bKδK+1)T . χ thus represents the non zero singular value of rank 1 matrix
Rf |p,N . Using (II.38), we obtain immediately that matrix Γ∗ coincides with limN→+∞ ΓN where ΓN is defined
by (II.37). As RN = σ2IM , and that H∗(

√
x+,∗) = limN→+∞HN (

√
x+,N ), it is easy to check using (II.87) that

s coincides with the number of strictly negative eigenvalues of matrix
(
G∗ Γ∗∗
Γ∗ G∗

)
where G∗ is defined by

G∗ =

(
σ2c∗

w+,∗ − σ2(1− c∗)

)1/2 (
(w+,∗ − σ2) Ir −∆2

)−1

Here, w+,∗ = limN→+∞ w+,N is equal to

w+,∗ = σ2

(
1 +

1 +
√

1 + 8c∗
2

)
(see the expression of w+,N , Eq. (7-54) in [33]). It is easily checked that all the previous required Assumptions
are verified by the present model. We now indicate how it is possible to choose the various parameters in order
that s coincides with 2r − 1. We first fix parameters (δk)k=1,...,r in such a way that δ2

1 ≥ δ2
2 ≥ . . . ≥ δ2

r and
δ2
k > (w+,∗ − σ2) for each k = 1, . . . , r while we consider in the following (bk)k=1,...,K verifying

1−
∑K
k=1 b

2
k

δ2
1

> 0

and choose

a =

(
1−

∑K
k=1 b

2
k

δ2
1

)1/2

(II.96)

Therefore, we of course have δ2
1 = E(|xn|2). We claim that with these set of parameters, s = 2r − 1. For this, we

first remark that matrix G∗ < 0. As Rank(Γ∗) = 1, the number s of stricty negative eigenvalues of
(
G∗ Γ∗∗
Γ∗ G∗

)
is equal to 2r− 1 or to 2r. Using the Schur complement trick twice, we obtain after some algebra that s = 2r− 1
if and only

−χ2Υ̃∗G−1
∗ Υ̃ > −

(
Υ∗G−1

∗ Υ
)−1

a condition equivalent to

a2 >
σ2c∗

σ2c∗ + w+,∗ − σ2

(
1− w+,∗ − σ2

δ2
1

)2

−
K∑
k=1

b2k
δ2
1

1− w+,∗−σ2

δ21

1− w+,∗−σ2

δ2k+1

 (II.97)

Using that a2 = 1 −
∑K
k=1 b

2
k

δ21
as well as δ2

1 ≥ δ2
k+1 for each k = 1, . . . ,K, we obtain that the above condition

holds, and, therefore, that s = 2r − 1. We also mention that the condition δ2
k > w+,∗ − σ2 for each k = 1, . . . , r

does not induce any power limitation on the useful signal u. Moreover, using a2 = 1−
∑K
k=1 b

2
k

δ21
, we obtain that the

non zero singular value χ of Rf |p,N is given by

χ2 = δ4
1

(
1−

∑
k=1 b

2
k

δ2
1

)
+

K∑
k=1

b2kδ
2
k+1
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As the (δ2
k)k=1,...,r can take any large values, the same property holds for χ. In sum, even for powerful enough

signals u for which the largest singular value of Rf |p,N is large, s may be strictly larger than P .

We illustrate the above analysis by numerical simulations in which N = 1200 and cN = 1
2 . The parameters

of model (II.95) are chosen as above by replacing c∗ by cN . Figures 1 and 2 plot an histogram of the
eigenvalues of a realization of matrix Σf,NΣ∗p,NΣp,NΣ∗f,N , as well as the graph of the density gN of the
deterministic equivalent measure νN of the empirical eigenvalue ν̂N of Wf,NW

∗
p,NWp,NW

∗
f,N . In the context

of Fig. 1, r = 2 and it is seen that s = 3 eigenvalues of Σf,NΣ∗p,NΣp,NΣ∗f,N escape from the support of
νN . In the context of Fig. 2, r = 3 and s = 5 as expected. We mention that in both figures, the largest
eigenvalue, which, in some sense, is due to the useful signal, appears much larger than the other spurious ones.
It can be checked that, as expected, for smaller values of cN , the spurious eigenvalues that escape from the
support of νN tend to become closer from x+,N . This will be confirmed in Section IV where more exhaustive
Monte Carlo simulation results evaluate the behaviour of two estimates of s when s = 5 and cN = 1

4 . It will
be seen that the estimates of s belong to {2, 3, 4, 5, 6, 7, 8}, fail to detect s = 5 very often, but never take the value 1.

0 1 2 3 4 5
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0.5

1.0

1.5

2.0

2.5

51.0 51.5

Figure 1. Histogram of the eigenvalues and graph of gN , r = 2, s = 3

The above examples show that s can take any odd value larger than 3. We finally show that s can also be equal to
2, and consider the following simple case. We assume that P = K = 1, and that the scalar state-space sequence
(xn)n∈Z is given by xn+1 = axn + bin where a ∈]0, 1[, b > 0, and (in)n∈Z is scalar unit variance i.i.d. sequence.
Moreover, un is given by

un = θNxn+1 = aθNxn + bθN in (II.98)

where θN is a unit norm M–dimensional vector. Therefore, matrices CN and DN coincide with vectors aθN and
bθN respectively. We also consider the case where L = 1. The covariance matrix Ru,N = E(unu

∗
n) is of course

equal to δ2 θNθ
∗
N where δ2 = E(|xn|2) = |b|2

1−a2 , so that r = P = 1. We also mention that in the present case,
δ2 does not depend on N . Moreover, Rf |p,N = E(xn+1x

∗
n) = aδ2θNθ

∗
N . Therefore, matrix Γ∗ is reduced to the

scalar aδ2, which also coincides with the non zero singular value χ of Rf |p,N . As r = P = 1, s may take the
values 0, 1, 2. In the following, we justify that it is possible to find a and b for which s = 2.
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Figure 2. Histogram of the eigenvalues and graph of gN , r = 3, s = 5

It is easily seen that s = 2 if δ2 > w+,∗ − σ2 and

a2 <
σ2c∗

σ2c∗ + (w+,∗ − σ2)

(
1− (w+,∗ − σ2

δ2

)2

(II.99)

In order to find a ∈]0, 1[ and b for which these conditions hold, we fix δ2 > w+,∗ − σ2, then choose a ∈]0, 1[
such that (II.99) holds, and finally select b in such a way that |b|2 = δ2(1 − a2). We again mention that δ2 and

χ = aδ2 can take arbitrarily large values, χ being however less than δ2
(

σ2c∗
σ2c∗+(w+,∗−σ2)

)1/2 (
1− (w+,∗−σ2

δ2

)
.

We again illustrate the above example by Fig. 3 obtained when N = 1200, cN = 1
2 , and where it is seen that

s = 2.

Figure 3. Histogram of the eigenvalues and graph of gN , r = 1, s = 2



30

III. THE CANONICAL CORRELATION COEFFICIENTS BETWEEN THE PAST AND THE FUTURE

We showed in Section II that the number of eigenvalues of R̂f |pR̂∗f |p that escape from the interval [0, x+,N ]
is in general not a consistent estimator of the dimension P of the minimal state space representation (I.3). In
this section, we thus study the largest singular values of matrix (

YfY
∗
f

N )−1/2 YfY
∗
p

N (
YpY

∗
p

N )−1/2, or equivalently the
largest eigenvalues of matrix (

YfY
∗
f

N )−1/2 YfY
∗
p

N (
YpY

∗
p

N )−1 YpY
∗
f

N (
YfY

∗
f

N )−1/2. It is clear that apart 0, the eigenvalues
of the above matrix coincide with the eigenvalues of matrix Πp,yΠf,y where for each i = p, f , Πi,y represents the
orthogonal projection matrix on the row space of matrix Yi, i.e.

Πi,y =
Y ∗i√
N

(
YiY

∗
i

N

)−1
Yi√
N

(III.1)

We remark that the eigenvalues of Πp,yΠf,y of course belong to [0, 1]. We follow the same approach than in
Section II. We first study the eigenvalues of Πp,vΠf,v , where Πi,v is obtained from Πi,y by replacing y by the
noise v. Under certain assumptions on the useful signal u (that appear simpler than in Section II), we study the
largest eigenvalues of Πp,yΠf,y by remarking that Πp,yΠf,y is a low rank perturbation of Πp,vΠf,v, and use the
approach developed in [6], [7], [40]. We again mention that, while this general approach appears classical, as
in Section II, the complexity of the random matrix models that come into play makes the following results not
obvious at all.

In the following, for the sake of simplicity, we will often use the same notations as in Section II to represent
different objects. This will not introduce any confusion because Section III and Section II are independent. In
particular, if (αN )N≥1 is a sequence of positive numbers, we will say in this section that function fN (z) = Oz(αN )
on a domain Ω ⊂ C \R+ if there exists two nice polynomials P1 and P2 such that |fN (z)| ≤ αNP1(|z|)P2( 1

ρ(z) )

for each z ∈ Ω, where ρ(z) = dist(z,R+). If Ω = C \ R+, we will just write fN (z) = Oz(αN ) without
mentioning the domain. For any diagonal K ×K matrix A(z), by A(z) = OKz (αN ), we mean that each diagonal
element of A(z) is Oz(αN ). Finally, we will use a lot the notation fN (z) = Oz2(αN ) without mentioning
the domain, which will mean that |fN (z)| ≤ αNP1(|z2|)P2( 1

ρ(z2) ) for some nice polynomials P1, P2 when
z2 ∈ C \ R+, or equivalently, when z ∈ C \ R. We notice that if P1, P2 and Q1, Q2 are nice polynomials, then
P1(|z|)P2( 1

ρ(z) ) + Q1(|z|)Q2( 1
ρ(z) ) ≤ (P1 + Q1)(|z|)(P2 + Q2)( 1

ρ(z) ), from which we conclude that if functions
f1 and f2 are Oz(αN ) then also f1(z) + f2(z) = Oz(αN ).

A. In the absence of signal

In this paragraph, we study the behaviour of the eigenvalues of Πp,vΠf,v. Due to the Gaussianity of the i.i.d.
vectors (vn)n≥1, it exists i.i.d. Nc(0, IM ) distributed vectors (viid,n)n≥1 such that E(viid,nv

∗
iid,n) = IM verifying

vn = R
1/2
N viid,n. It is clear that the row spaces of Vp and Vf coincide with the row spaces of the block Hankel

matrices Vp,iid and Vf,iid defined from vectors (vn,iid)n=1,...,N+2L−1. Therefore, the projection matrices Πi,v and
Πi,viid coincide for i = p, f and there is thus no restriction to assume in Section III-A that RN = IM .

As before, we denote by Wp,Wf the matrices defined by Wp = 1√
N
Vp and Wf = 1√

N
Vf . In order to

simplify the notations of this Section, matrices Πi,v , i = p, f are denoted Πi, i = p, f . Therefore, we have
Πp = W ∗p (WpW

∗
p )−1Wp and Πf = W ∗f (WfW

∗
f )−1Wf . We recall that WN is the 2ML×N matrix

WN =

(
Wp,N

Wf,N

)
, (III.2)

As RN is supposed to be equal to IM , the elements (Wm
i,j)i≤2L,j≤N,m≤M of WN satisfy

E{Wm
i,jW

m′

i′,j′} =
1

N
δm−m′δi+j−(i′+j′). (III.3)

where Wm
i,j represents the element which lies on the (m + M(i − 1))-th line and j-th column for 1 ≤ m ≤ M ,

1 ≤ i ≤ 2L and 1 ≤ j ≤ N . For each j = 1, . . . , N ,{wj}Nj=1, {wp,j}Nj=1 and {wf,j}Nj=1 are the column of
matrices W,Wp and Wf respectively.
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We first verify that, almost surely, for N large enough, matrices Wi,NW
∗
i,N are invertible, so that the orthogonal

projection matrices Πi, i = p, f are well defined. For this, we mention that [32] (see Theorem 1.1) established
that the empirical eigenvalue distribution of Wi,NW

∗
i,N for i = {p, f} converges towards the Marcenko-Pastur

distribution with parameter c∗, and that almost surely, for N greater than a random integer, its eigenvalues are
located in a neighbourhood of [(1 − √c∗)2, (1 +

√
c∗)

2]. Therefore, almost surely, for N large enough, matrices
Wf,NW

∗
f,N and Wp,NW

∗
p,N are invertible. Matrices Πi,N are thus well defined for N large enough.

We next use again the results of [32] to show the following Lemma which will be useful to establish Theorem III.1
below.

Lemma III.1. If c∗ > 1
2 , then, almost surely, for N large enough, 1 is eigenvalue of Πp,NΠf,N with multiplicity

2ML−N

Proof. It is clear that the eigenspace of Πp,NΠf,N associated to the eigenvalue 1 coincides with
spr(Wp,N )∩ spr(Wf,N ), where for a matrix A, spr(A) represents the space generated by the rows of A. We have
thus to verify that if c∗ > 1/2, then almost surely, for N large enough, dim (spr(Wp,N ) ∩ spr(Wf,N )) = 2ML−N .
For this, we use again [32]. The eigenvalue distribution of WNW

∗
N converges towards the Marcenko-Pastur

distribution with parameter 2c∗, and if c∗ > 1
2 , i.e. if 2c∗ > 1, then, for each ε > 0, 0 is eigenvalue of WNW

∗
N

with multiplicity 2ML−N and the remaining N eigenvalues are located almost surely for each N large enough
in [(1−

√
2c∗)

2 − ε, (1 +
√

2c∗)
2 + ε]. Therefore, we obtain that dim(spr(WN )) = N while we already know that

dim(spr(Wp,N )) + dim(spr(Wf,N )) = 2ML. As spr(WN ) = spr(Wp,N ) + spr(Wf,N ), we obtain as expected
that dim (spr(Wp,N ) ∩ spr(Wf,N )) = 2ML−N . �.

1) Preliminary results: In order to be able to use the perturbation approach developed in [6], [7], [40], it appears
necessary to evaluate the asymptotic behaviour of the resolvent of matrix ΠpΠf . The corresponding results will also
provide a characterization of the eigenvalues of ΠpΠf . For this, we use in the following the integration by parts
formula and the Poincaré-Nash inequality (see Propositions I.1, I.2). The resolvent of ΠpΠf will be interpreted as
a function of the entries of matrix WN . However, this approach needs some care because, considered as a function
of the entries of WN , matrices Πp and Πf are not differentiable everywhere. In particular, for i = p, f , Πi is not
differentiable when the rank of Wi,N is less than ML. But, we have seen that almost surely, for N large enough,
matrices WfW

∗
f and WpW

∗
p are invertible. In order to take benefit of this property, we use in the following a

regularization term ηN already introduced in [23] in a different context. Another problem posed by the evaluation
of the resolvent of ΠpΠf is due to the observation that, while matrix ΠpΠf has real eigenvalues that belong to
[0, 1], it is not Hermitian. Some basic properties of the resolvent of ΠpΠf thus do not hold, in particular the upper
bound (I.22). In this paragraph, we first present the regularization term ηN as well as some extra useful properties.
a) Regularization term: We define ηN by

ηN = det [φ(Wf,NW
∗
f,N )]det [φ(Wp,NW

∗
p,N )], (III.4)

where φ is a smooth function such that

φ(λ) = 1 for λ ∈ [(1−
√
c∗)

2 − ε], [(1 +
√
c∗)

2 + ε], (III.5)
φ(λ) = 0 for λ ∈ [−∞, (1−

√
c∗)

2 − 2ε] ∪ [(1 +
√
c∗)

2 + 2ε, +∞]

and φ(λ) ∈ (0, 1) elsewhere. Here, ε verifies (1−√c∗)2 − 2ε > 0. Taking into account the almost sure behaviour
of the eigenvalues of matrices WpW

∗
p and WfW

∗
f , ηN = 1 and

(Wi,NW
∗
i,N )−1ηN ≤

IML

(1−√c∗)2 − 2ε
. (III.6)

almost surely for each N larger than a random integer. We first mention the following useful property.

Lemma III.2. For each l, k ∈ N it holds that

E{ηlN} = 1 +O
(

1

Nk

)
(III.7)

Moreover, if X is a bounded random variable, we have for each integer l ≥ 1

E(ηlX) = E(X) +O
(

1

Nk

)
(III.8)
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for each integer k.

Proof. Denote

EN = {one of the eigenvalues of WpW
∗
p or WfW

∗
f escapes from the [(1−

√
c∗)

2 − ε, (1 +
√
c∗)

2 + ε]} (III.9)

and define another smooth function φ0 as

φ0(λ) =

{
0 for λ ∈ [(1−√c∗)2, (1 +

√
c∗)

2],

1 for λ ∈ [−∞, (1−√c∗)2 − ε] ∪ [(1 +
√
c∗)

2 + ε, +∞]

and φ0(λ) ∈ (0, 1) elsewhere. Then we have

P (EN ) ≤ P
(
Trφ0(WpW

∗
p ) ≥ 1

)
≤ E

{(
Trφ0(WpW

∗
p )
)2k}

for all k ∈ N. In order to evaluate E
{(

Trφ0(WpW
∗
p )
)2k}

, one can use the same steps as in the proof of Lemma 3.2

[33] and get immediately that E
{(

Trφ0(WpW
∗
p )
)2k}

= O
(

1

N2k

)
and therefore that P (EN ) = O

(
1

N2k

)
for each

k. To show (III.7) we write

|E{ηlN − 1}|2 = |E{(ηN − 1)(1 + . . .+ ηl−1
N )}|2 ≤ E{(ηN − 1)2}E{(1 + . . .+ ηl−1

N )2}
≤ κE{(ηN − 1)21EN }

because ηN−1 = 0 on EcN . Since by definition φ(λ) ∈ [0, 1], we conclude that 0 ≤ ηN ≤ 1 and 0 ≤ (ηN−1)2 ≤ 1.

This allows us to write that κE{(ηN −1)21EN } ≤ κE{1EN } = κP (EN ) = O
(

1

N2k

)
, which completes the proof.

To verify (III.8), we remark that

|E{(ηlN − 1)X}|2 ≤ E{(1− ηlN )2}E
{
|X|2

}
= κ

(
1− 2

(
1 +O(N−k)

)
) + 1 +O(N−k)

)
= O

(
1

Nk

)
.

�

b) Linearisation: It is clear that almost surely, ηNΠi,N = Πi,N for each N large enough. Therefore, in order
to evaluate the almost sure behaviour of the resolvent of Πp,NΠf,N , it is sufficient to study the behaviour of the
resolvent QN (z) of ηNΠp,NηNΠf,N defined by

QN (z) = (ηNΠp,NηNΠf,N − zI)
−1

As the direct study of QN (z) is not obvious, we rather use, as in Section II, the linearisation trick and introduce
the resolvent QN (z) of the 2N × 2N block matrix(

0 ηNΠp,N

ηNΠf,N 0

)
.

which can be written as

QN (z) =

(
(Qpp)N (z) (Qpf )N (z)
(Qfp)N (z) (Qff )N (z)

)
=

(
zQN (z2) QN (z2)ηNΠp,N

ηNΠf,NQN (z2) zQ̂N (z2)

)
(III.10)

where Q̂N (z) is the resolvent of matrix ηNΠf,NηNΠp,N . Since QN (z) and QN (z) are resolvents of non Hermitian
matrices, the usual bound (I.22) is not necessarily verified. A more specific control is thus needed.

Lemma III.3. If Imz 6= 0 (i.e. z2 ∈ C \ R+), then ‖Q(z)‖ = Oz2(1).

Proof. It is sufficient to bound each of the four blocks of Q. We start with Qpf . For this we use expression (III.10)
for Qpf , the fact that Πp = Π2

p and that (AB − x)−1A = A(BA− x)−1 in the case A = ηΠp, B = ηΠpΠf . This
leads to

Qpf = (η2
NΠpΠf − z2)−1ηNΠpΠp = ηNΠp(η

2
NΠpΠfΠp − z2)−1Πp. (III.11)
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(η2
NΠpΠfΠp − z2)−1 is the resolvent of a positive Hermitian matrix evaluated at z2 ∈ C \ R+, so that its norm

can be bounded by (ρ(z2))−1 (see (I.22)). Since ‖Πp‖ ≤ 1 and ηN ≤ 1, we have

‖Qpf‖ ≤
1

ρ(z2)
(III.12)

It is easily seen that ‖Qfp‖ can be evaluated similarly. In order to address Qpp, we use again (III.10) and the
resolvent identity (I.23), and observe that:

Qpp = z(η2
NΠpΠf − z2)−1 =

1

z
(−IN + η2

NΠpΠf (η2
NΠpΠf − z2)−1) =

1

z
(−IN + ηNΠpQfp)

It obviously holds that ‖−IN+ηNΠpQfp‖ ≤ 1+ 1
ρ(z2) . To show that |z−1| ≤ P (ρ(z2)−1) for some nice polynomial

P , we write

1

|z|2
≤ 1

ρ(z2)
≤ 1 +

1

ρ(z2)
≤
(

1 +
1

ρ(z2)

)2

(III.13)

This brings us to the conclusion that ‖Qpp‖ = Oz2(1) and so for Qff . This completes the proof of the Lemma. �

Remark III.1. It is worth to remark that in the course of the proof, we obtained that 1
|z|Oz2(1) is still Oz2(1).

Since |z| ≤ 1
2 (1 + |z|2) holds, we also have |z|Oz2(1) = Oz2(1).

Remark III.2. While QN (z) is not the resolvent of an Hermitian matrix, 1
NTrQN (z) coincides with the Stieltjes

transform of the empirical eigenvalue distribution ν̂N of matrix η2ΠpΠf , which, of course, is a probability measure
carried by [0, 1], and thus by R+. Therefore, (III.10) and property (I.18) imply 1

NTr Qpp(z) = 1
NTr Qff (z)

coincide with the Stieltjes transform of a probability measure carried by [−1, 1] which appears to be the eigenvalue

distribution of matrix
(

0 ηNΠp,N

ηNΠf,N 0

)
The proof of Lemma III.3 also leads to the following useful Corollary.

Corollary III.1. N−1TrQpf (z) and N−1TrQfp(z) coincide with the value taken at z2 by the Stieltjes transforms
of some positive measures carried by R+. The same property holds for E{N−1TrQpf (z)} and E{N−1TrQfp(z)},
and the mass of the corresponding measures can be written as cN +O(N−k) for each k ∈ N.

Proof. We just establish the properties of N−1TrQpf (z). (η2
NΠpΠfΠp − z2)−1 is the resolvent of a positive

Hermitian matrix evaluated at point z2. Therefore, N−1TrηNΠp(η
2
NΠpΠfΠp − z2)−1Πp = N−1TrQpf (z) (see

Eq. III.11)) coincides with the Stieltjes transform of a positive measure carried by R+ of total mass N−1TrηNΠ2
p =

N−1TrηNΠp evaluated at z2. This implies that N−1E{TrQpf} has the same property, and that the mass of the
corresponding measure is equal to N−1E{TrηNΠp}. We claim that

N−1E{TrηNΠp} = cN +O(N−k) (III.14)

for each integer k. To justify (III.14), we first use (III.8) and obtain that N−1E{TrηNΠp} = N−1E{TrΠp} +
O(N−k). It is clear that N−1Tr Πp = cN on the event EcN , where we recall that EN is the set defined by (III.9).
Writing

N−1E{TrΠp} = N−1E{TrΠp1EcN }+N−1E{TrΠp1EN } = cNP (EcN ) +N−1E{TrΠp1EN }

and using that P (EN ) = O(N−k) for each k, we obtain that N−1E{TrΠp1EN } = O(N−k) for each k and that
N−1E{TrΠp} = cN +O(N−k). This completes the proof of (III.14). �

c) Properties based on the invariance of the complex Gaussian distribution :

Lemma III.4. The matrix E{ηN (WiW
∗
i )−1} is block diagonal and matrices E{ηNΠi}, E{Qij},

E{ηNQij}, E{ηNΠhQij} and E{ηNQijW
∗
h (WhW

∗
h )−2Wh} are diagonal, for i, j, h = {p, f}. Moreover,



34

E(ηN W
∗
h (WhW

∗
h )−1) = E(ηN QijW

∗
h (WhW

∗
h )−1) = E(ηN Πk QijW

∗
h (WhW

∗
h )−1) = 0 for i, j, h, k = {p, f}.

Finally, if i, j, h = {p, f},for each n = 1, . . . , N , we have

E{(Qij)
n,n} = E{(Qĩ̃j)

N+1−n,N+1−n} (III.15)

E{ηN (ΠhQij)
n,n} = E{ηN (Πh̃Qĩ̃j)

N+1−n,N+1−n} (III.16)

TrE{Qij} = TrE{Qĩ̃j}, (III.17)

TrE{ηNΠhQij} = TrE{ηNΠh̃Qĩ̃j}, (III.18)

where “ ˜ ” changes index to opposite: p→ f, f → p.

The proof is postponed to the Appendix. To establish the first statements of the Lemma, we remark that for each
θ, the probability distribution of (vn)n∈Z coincides with the probability distribution of (zn)n∈Z where z is chosen
as zn = vne

−inθ for each n. We use the same trick when zn = v−n+N+2L for each n to prove (III.15) –(III.18).

We now establish that the diagonal matrices E{ηN (WiW
∗
i )−1} and E{ηNΠi} are multiples of the identity matrix

up to error terms.

Lemma III.5. For i = {p, f}, we have:

E{ηN (WiW
∗
i )−1} =

1

1− cN
IML +OML

(
1

N3/2

)
(III.19)

E{ηNΠi} = cNIN +ON
(

1

N3/2

)
. (III.20)

Moreover, (ML)−1TrE{ηN (WiW
∗
i )−1} = (1− cN )−1 +O( 1

N2 ).

The proof of Lemma III.5 uses the integration by parts formula and the Poincaré-Nash inequality, and is provided
in the Appendix.

2) Expression of matrix E{Q} obtained using the integration by parts formula: We now establish that matrices
Qij are, up to error terms, multiples of IN , and characterize the asymptotic behaviour of their common diagonal
terms. For this, we state the following Proposition that is proved by using the integration by parts formula and the
Poincaré-Nash inequality.

Proposition III.1. The following equalities hold for each z ∈ C+.

E
{

QppηΠp

}
=cNE

{
Qpp

}
− (1− cN )E

{
ηQppW

∗
p (WpW

∗
p )−2Wp

} 1

N
E
{

Tr
(
ηΠ⊥p Qfp

)}
+ ∆pp (III.21)

E{QpfηΠp} =cNE
{

Qpf

}
− (1− cN )E

{
ηQppW

∗
p (WpW

∗
p )−2Wp

} 1

N
E
{

Tr
(
ηΠ⊥p Qff

)}
+ ∆pf (III.22)

E
{

QppηΠf

}
=cNE

{
Qpp

}
− (1− cN )E

{
ηQpfW

∗
f (WfW

∗
f )−2Wf

} 1

N
E
{

Tr
(
ηΠ⊥f Qpp

)}
+ ∆1

pp (III.23)

E
{

QpfηΠf

}
=cNE

{
Qpf

}
− (1− cN )E

{
ηQpfW

∗
f (WfW

∗
f )−2Wf

} 1

N
E
{

Tr
(
ηΠ⊥f Qpf

)}
+ ∆1

pf (III.24)

where matrices ∆pp,∆pf ,∆
1
pp,∆

1
pf are diagonal matrices whose entries are Oz2

(
N−3/2

)
terms, and whose

normalized traces are Oz2
(
N−2

)
terms.

(III.21) is proved in the Appendix. (III.22, III.23, III.24) are established similarly.

In order to introduce the next result, we denote by wN (z) the function defined by

wN (z) = 1 +
1

N
E{Tr (ηNΠ⊥p Qfp)} = 1 +

1

N
E{Tr (ηNΠ⊥f Qpf )} (III.25)

where the equality between the second term and the third term in (III.25) comes from (III.18). We claim that

1

c2N − z2w2
N

= Oz2(1) (III.26)
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To verify (III.26), we first notice that (III.11) implies that 1
NE{Tr (ηNΠ⊥f Qpf Π⊥f )} = 1

NE{Tr (ηNΠ⊥f Qpf )} (the
equality follows from Π⊥f = (Π⊥f )2) coincides with the value taken at point z2 by the Stieltjes transform of a
positive measure carried by R+. Proposition 5.1, item 4 in [21] thus implies that function −

(
z2wN (z)

)−1
has

the same property. Moreover, the converse of (I.16, I.17) in Proposition 4.1 in [33] leads to the conclusion that

−
(
z2(wN − c2N

z2wN
)
)−1

also coincides with the value taken at point z2 by the Stieltjes transform of a positive
measure carried by R+. Writing |c2N − z2w2

N |−1 as

∣∣∣∣ 1

c2N − z2w2
N

∣∣∣∣ =

∣∣∣∣∣∣ 1

z2wN

(
− c2N
z2wN

+ wN

)
∣∣∣∣∣∣ =

∣∣∣∣ 1

z2wN

∣∣∣∣ |z|2
∣∣∣∣∣∣ 1

z2(− c2N
z2wN

+ wN )

∣∣∣∣∣∣
leads to (III.26). We are in position to precise the behaviour of the diagonal matrices E(Qij).

Proposition III.2. For i = p, f , and for i 6= j, we have

E(Qii(z)) =
zw2

N (z)

c2N − (zwN (z))2
IN + ONz2

(
1

N3/2

)
(III.27)

E(Qij(z)) =
cNwN (z)

c2N − (zwN (z))2
IN + ONz2

(
1

N3/2

)
(III.28)

where the normalized traces of the ONz2
(

1
N3/2

)
error terms are Oz2

(
1
N2

)
terms.

Proof. We just establish (III.27) for i = p and (III.28) for i = p, j = f because, due to (III.15), (III.27) and (III.28)
for i = f and for i = f, j = p, respectively, are consequences of (III.27) for i = p and (III.28) for i = p, j = f . We
consider Proposition III.1, and begin by showing that the use of (III.21) and (III.22) allows to obtain the following
relationship between E(Qpp) and E(Qpf )

zE(Qpf (z))wN (z) = cE(Qpp(z)) +ONz2
(

1

N3/2

)
(III.29)

where the normalized trace of the ONz2
(

1
N3/2

)
error term is a Oz2

(
1
N2

)
term. To check (III.29), we first notice

that (III.10) and (I.23) lead to the equality

QffηΠ⊥p = z(η2ΠfΠp − z2)−1ηΠ⊥p = z

(
− 1

z2
ηΠ⊥p +

1

z2
(η2ΠfΠp − z2)−1η3ΠfΠpΠ

⊥
p

)
= −1

z
ηΠ⊥p (III.30)

(III.14) implies that N−1E
(
TrηΠ⊥p

)
= (1 − cN ) + O( 1

Nk
) for each k. Therefore, (III.30) leads to

E{N−1TrQffηΠ⊥p } = − (1−cN )
z + O( 1

Nk
) for each k. Moreover, (III.10) and Π2

p = Πp lead to E(QpfηΠp) =
E(ηQpf ), which, using again (III.8), can also be written as E(Qpf ) + ONz2( 1

Nk
) for each k. Therefore, (III.22)

implies that

E
{
ηQppW

∗
p (WpW

∗
p )−2Wp

}
=

z

1− cN
E{Qpf} −

z

(1− cN )2
∆pf +

ONz2
(

1

Nk

)
+ E

{
ηQppW

∗
p (WpW

∗
p )−2Wp

}
Oz2

(
1

Nk

)
.

It is easily seen that E{ηQppW
∗
p (WpW

∗
p )−2Wp}Oz2( 1

Nk
) = ONz2( 1

Nk
). We next notice that (III.10) implies that

QppηΠp = zQpf . Plugging this and the above expression of E
{
ηQppW

∗
p (WpW

∗
p )−2Wp

}
into (III.21), we obtain

easily (III.29). Moreover, the property of the normalized trace of the error term in (III.29) follows immediately
from 1

NTr ∆pp = Oz2
(

1
N2

)
and 1

NTr ∆pf = Oz2
(

1
N2

)
.

We now use in a similar way (III.23) and (III.24) to obtain another relationship between E(Qpp) and E(Qpf ). We
first notice that by (III.18) and (III.30),

E{N−1TrQppηΠ⊥f } = E{N−1TrQffηΠ⊥p } = − (1− cN )

z
+O(

1

Nk
) (III.31)
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for each k. We then remark that (III.20) implies that

E{QppηΠf} = zE{(− 1

z2
+

1

z2
(η2
NΠpΠf − z2)−1η2

NΠpΠf )ηNΠf} = −1

z
E{ηNΠf}

+
1

z
E{QpfηΠf}+ONz2(N−k) = −cN

z
IN +

1

z
E{QpfηΠf}+ONz2(N−3/2)

for each k. Moreover, it holds that E{QpfηΠf} = E{(η2ΠpΠf − z2)−1η2ΠpΠf} = IN + zE{Qpp}. (III.23) thus
allows to obtain that

(1− cN )E{ηQpfW
∗
f (WfW

∗
f )−2Wf} = IN + zE(Qpp) +ONz2(N−3/2)

(III.24) eventually leads to

(IN + zE(Qpp)) wN (z) = cNE(Qpp) +ONz2(N−3/2) (III.32)

where the normalized trace of the ONz2
(

1
N3/2

)
error term is a Oz2

(
1
N2

)
term. (III.27), (III.28), and the property

of the normalized traces of the error terms then follow from (III.29) and (III.32). �

Finally, to complete this paragraph, we denote

α̃N =
1

N
E{TrQpp} =

1

N
E{TrQff} (III.33)

αN =
1

N
E{TrQpf} =

1

N
E{TrQfp} (III.34)

and remark that taking the normalized traces of (III.27) and (III.28) implies that α̃N (z) =
zw2

N (z)

c2N−(zwN (z))2
+Oz2

(
1
N2

)
and αN (z) = cNwN (z)

c2N−(zwN (z))2
+ ONz2

(
1
N2

)
. We have thus shown the following Corollary.

Corollary III.2. For i = p, f , and for i 6= j, we have

E(Qii(z)) = α̃N (z) IN + ONz2
(

1

N3/2

)
(III.35)

E(Qij(z)) = αN (z) IN + ONz2
(

1

N3/2

)
(III.36)

where the normalized traces of the ONz2
(

1
N3/2

)
error terms are Oz2

(
1
N2

)
.

We now establish a relationship between αN and α̃N and take benefit of this to show that α̃N is a solution of a
perturbed degree 2 polynomial equation. We will deduce from this that E

(
1
NTrQN (z)

)
verifies a similar equation.

This property will be useful to evaluate the limit eigenvalue distribution of ΠpΠf . We notice that
1

N
TrηΠ⊥f Qpp =

1

N
Tr
(
ηQpp − ηNΠfz(η

2ΠpΠf − z2)−1
)

=
1

N
Tr (ηQpp − zQfp)

Taking the expectation from the both sides, using (III.17) and replacing η by 1 in
1

N
Tr (ηQpp), we get that

1

N
E{ηTrΠ⊥f Qpp} = α̃− zα+Oz2

(
1

Nk

)
(III.37)

for each k. (III.31) thus implies that

αN (z) =
α̃N (z)

z
+

1− cN
z2

+Oz2
(

1

Nk

)
(III.38)

Taking the normalized trace of (III.29) leads to

cN α̃N (z) = zαN (z)wN (z) +Oz2
(

1

N2

)
(III.39)

We now express wN in terms of αN and α̃N . For this we use Qfp = ηΠf (η2ΠpΠf − z2)−1 and write

N−1E{Tr(ηΠ⊥p Qfp)} = N−1E{Tr(ηQfp)} −N−1E{Tr(η2ΠpΠf (η2ΠpΠf − z2)−1)}

= α− 1− zN−1E{Tr(Qpp)}+Oz2
(

1

Nk

)
= α− 1− zα̃+Oz2

(
1

Nk

)
(III.40)
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Therefore, we obtain that w(z) = α(z) − zα̃(z) + Oz2
(

1

Nk

)
for each k. Plugging this into (III.39) and using

(III.38), we obtain after some algebra that

(1− z2)α̃2
N +

(
2(1− cN )

z
− z
)
α̃N +

(1− cN )2

z2
= Oz2

(
1

N2

)
. (III.41)

We define α̃N (z) and αN (z) by

α̃N (z) =
1

N
E{TrQN (z)} (III.42)

αN (z) =
1

N
E{TrηΠpQN (z)} (III.43)

for each z ∈ C \ R+. (III.10) implies that α̃N (z) = zα̃N (z2) and αN (z) = αN (z2) if Imz 6= 0 or equivalently if
z2 ∈ C \ R+. Therefore, we deduce from (III.41) that α̃N (z) is a solution of the perturbed equation

(1− z2)z2α̃2
N (z2) +

(
2(1− cN )− z2

)
α̃N (z2) +

(1− cN )2

z2
= Oz2

(
1

N2

)
.

The l.h.s of this equation is a function of z2 ∈ C \R+, thus the error term at the r.h.s is also a function of z2. By
exchanging z2 with z we have

(1− z)zα̃2
N (z) + (2(1− cN )− z) α̃N (z) +

(1− cN )2

z
= Oz

(
1

N2

)
(III.44)

on C \ R+. Moreover, from (III.38), we obtain that

αN (z) = α̃N (z) +
1− cN
z

+Oz
(

1

Nk

)
. (III.45)

on C \ R+ for each integer k ≥ 1.

Remark III.3. Corollary III.1 implies that αN is the Stieltjes transform of a positive measure carried by R+ with
mass cN + Oz(N−k). This is in accordance with (III.45) because α̃N is the Stieltjes transform of a probability
measure carried by R+ (i.e. the expectation of the empirical eigenvalue distribution of η2ΠpΠf ) and − 1−cN

z is
the Stieltjes transform of measure (1− cN )δ0.

3) Limiting distribution and almost sure localisation of the eigenvalues of ΠpΠf : In this paragraph, we evaluate
the almost sure asymptotic behaviour of the empirical eigenvalue distribution ν̂N of matrix ΠpΠf . As ηN = 1
almost surely for N large enough, this can be done by evaluating the almost sure behaviour of 1

NTr(QN (z)) where
we recall that QN (z) is the resolvent of the regularized matrix η2

NΠpΠf . We first notice that, in conjunction with
the Borel-Cantelli Lemma, Lemma A.2, Eq. (A.23), applied for i = j = p and F = I , implies immediately that

1

N
Tr(QN (z))− E

(
1

N
Tr(QN (z))

)
→ 0 a.s. (III.46)

for each z ∈ C\R+. We are thus back to the evaluation of the asymptotic behaviour of α̃N (z) = E
(

1
NTr(QN (z))

)
.

For this, we introduce the probability measure ν̃N defined by

ν̃N = (cNδ1 + (1− cN )δ0) � (cNδ1 + (1− cN )δ0) (III.47)

where � represents the free multiplicative convolution product operator (see e.g. [52] Section 3.6). We recall that
if Π1 and Π2 are orthogonal projection matrices onto the rows of two mutually independent random Gaussian
ML×N matrices with i.i.d. standard Gaussian entries, then the results of [52] imply that the empirical eigenvalue
distribution of Π1Π2 has the same asymptotic behaviour than ν̃N . In the following, we establish that, while Πp

and Πf are not generated as Π1 and Π2, ν̂N behaves as ν̃N .

For this, we denote by t̃N the Stieltjes transform of ν̃N . The expression and the properties of t̃N and of ν̃N are
well-known, see for example Example 3.6.7. [52]. If z ∈ C+, t̃N is given by

t̃N (z) =
z − 2(1− cN ) +

√
z(z − 4cN (1− cN ))

2(1− z)z
, (III.48)
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where we define function z 7→
√
z for z = |z|eiθ, θ ∈ [0, 2π) as

√
z =

√
|z|eiθ/2. In particular, if x ∈ R+ and

z = xeiθ then
√
z −−−→

θ↘0

√
x and

√
z −−−−→

θ↗2π
−
√
x. Then one can easily obtain that limz→x,z∈C+ t̃N (z) exists for

x ∈ (−∞, 0) ∩ (4cN (1− cN ),+∞) and x 6= 1. This limit is still denoted t̃N (x), and

t̃N (x) =


x− 2(1− cN )−

√
x(x− 4cN (1− cN ))

2(1− x)x
, x < 0

x− 2(1− cN ) +
√
x(x− 4cN (1− cN ))

2(1− x)x
, x > 4cN (1− cN ), x 6= 1

(III.49)

Moreover, ν̃N = (cNδ1 + (1− cN )δ0) � (cNδ1 + (1− cN )δ0) is given by

dν̃N (λ) =

√
λ(4cN (1− cN )− λ)

2πλ(1− λ)
1[0,4cN (1−cN )]dλ+ (1− cN )δ0 + max(2cN − 1, 0)δ1. (III.50)

The support of ν̃N , denoted by SN , is thus given by

SN = [0, 4cN (1− cN )] ∪ {1}1cN>1/2. (III.51)

Finally, t̃N satisfies the equation (III.44), but in which the term Oz(N−2) is replaced by 0, i.e.

z(1− z)t̃2N (z) + (2(1− cN )− z)t̃N (z) +
(1− cN )2

z
= 0 (III.52)

a property which suggests that α̃N (z)− t̃N (z)→ 0. In order to establish this formally, we establish the following
Proposition.

Proposition III.3. α̃N (z) can be written as

α̃N (z) = t̃N (z) + r̃N (z), (III.53)

where r̃N is holomorphic in C \ R+, and verifies

|rN (z)| ≤ 1

N2
P1(|z|)P2

(
1

Imz

)
(III.54)

for each z ∈ C+, where P1 and P2 are two nice polynomials.

The proof is given in the Appendix.

As cN → c∗, t̃N (z) → t̃∗(z) where t̃∗(z) is obtained from t̃N (z) by replacing cN by c∗ in Eq. (III.48). t̃∗ is of
course the Stieljes transform of the measure ν̃∗ given by

dν̃∗(λ) =

√
λ(4c∗(1− c∗)− λ)

2πλ(1− λ)
1[0,4c∗(1−c∗)]dλ+ (1− c∗)δ0 + max(2c∗ − 1, 0)δ1 (III.55)

and the support S∗ of ν̃∗ is obtained by replacing cN by c∗ in (III.51). Sequence (ν̃N )N≥1 of course converges
weakly towards the probability measure ν̃∗. We deduce from this and from Proposition III.3 the following Theorem
which states that (ν̂N )N≥1 converges weakly almost surely towards ν̃∗. Moreover, all the eigenvalues of ΠpΠf are
almost surely localised in a neighbourhood of S∗.

Theorem III.1. The empirical eigenvalue distribution ν̂N of Πp,NΠf,N verifies

ν̂N → ν̃∗ (III.56)

weakly almost surely. If c∗ < 1
2 , for each ε > 0, almost surely, for each N large enough, all the eigenvalues of

ΠpΠf belong to [0, 4c∗(1− c∗) + ε]. If c∗ > 1
2 , 1 is eigenvalue of ΠpΠf with multiplicity 2ML−N , and for each

ε > 0, the 2(N −ML) remaining eigenvalues are almost surely located in [0, 4c∗(1− c∗) + ε] for N large enough.

Proof. (III.46) and Proposition III.3 imply that
1

N
Tr(QN (z))− t̃N (z)→ 0 a.s. (III.57)

for each z ∈ C+. As t̃N (z)→ t̃∗(z) on C+, we obtain that 1
NTr(QN (z))→ t̃∗(z)→ 0 almost surely on C+, and

that (III.56) holds.
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We remark that if c∗ = 1
2 , the support S∗ of ν̃∗ is equal to the whole interval [0, 1]. As we know that the eigenvalues

of ΠpΠf belong to [0, 1], the knowledge of S∗ does not provide any valuable information of the almost sure location
of these eigenvalues if c∗ = 1

2 . If c∗ 6= 1
2 , the almost sure localisation of the eigenvalues of ΠpΠf can be established

using the Haagerup-Thornbjornsen approach ([20]) using decomposition (III.53) of α̃N (z). As the corresponding
proof is rather standard, we just provide a sketch of proof. We first mention that (III.53) implies that if ψ is a C∞
function constant on the complementary of a compact subset, then, we have

E (Tr (ψ(ΠpΠf ))) = N

∫
SN

ψ(λ) dν̃N (λ) +O(
1

N
) (III.58)

(see Proposition 6.2 in [20] or Proposition 4.6 in [9]). If moreover ψ vanishes on SN , we obtain that

E (Tr (ψ(ΠpΠf ))) = O(
1

N
) (III.59)

while if ψ′ vanishes on SN , the Poincaré-Nash inequality allows to establish that Tr (ψ(ΠpΠf ) −
E (Tr (ψ(ΠpΠf ))) → 0 almost surely. Therefore, (III.58) implies that Tr (ψ(ΠpΠf ) − N

∫
SN ψ(λ) dν̃N (λ) → 0

almost surely if ψ′ vanishes on SN . We consider ε > 0 small enough, and a function ψ1 ∈ C∞ that verifies:

ψ1(λ) =1 if λ ∈
(
[0, 4c∗(1− c∗) + ε] ∪ [1− ε, 1 + ε]1c∗>1/2

)c
ψ1(λ) =0 if λ ∈ [0, 4c∗(1− c∗) + ε/2] ∪ [1− ε/2, 1 + ε/2]1c∗>1/2

ψ1(λ) ∈[0, 1] elsewhere

As cN → c∗, ψ1 (and therefore ψ′1) vanishes on SN for N large enough, so that Tr (ψ1(ΠpΠf )) → 0. The
number of eigenvalues of ΠpΠf located into ∈

(
[0, 4c∗(1− c∗) + ε] ∪ [1− ε, 1 + ε]1c∗>1/2

)c
is clearly less than

Tr (ψ1(ΠpΠf )) which converges towards 0. Therefore, almost surely, for each N large enough, all the eigenvalues
of ΠpΠf belong to [0, 4c∗(1− c∗) + ε] ∪ [1− ε, 1 + ε]1c∗>1/2. This completes the proof of Theorem III.57 when
c∗ < 1/2. In order to address the case c∗ > 1/2, we consider a function ψ2 ∈ C∞ satisfying

ψ2(λ) =1 if λ ∈ [1− ε, 1 + ε]

ψ2(λ) =0 if λ ∈ [1− 2ε, 1 + 2ε]c

ψ2(λ) ∈[0, 1] elsewhere

ψ′2 vanishes of SN , and
∫
SN ψ2(λ) dν̃N (λ) = 2cN−1. Therefore, we obtain that Tr (ψ2(ΠpΠf ))−(2ML−N)→ 0

almost surely. As there is no eigenvalue of ΠpΠf in [1 − 2ε, 1 − ε), Tr (ψ2(ΠpΠf )) coincides with the number
of eigenvalues of ΠpΠf located into [1 − ε, 1]. As Tr (ψ2(ΠpΠf )) − (2ML − N) → 0 almost surely, we obtain
that for N large enough, ΠpΠf has 2ML − N eigenvalues located in [1 − ε, 1]. Lemma III.1 implies that 1 is
eigenvalue of ΠpΠf with multiplicity 2ML − N , from which we get that if c∗ > 1/2, the eigenvalues of ΠpΠf

belong to [0, 4c∗(1− c∗) + ε] ∪ {1}. �

In the following, it will be useful to introduce the measure νN defined by

νN =
1

cN
ν̃N −

1− cN
cN

δ0 =

√
λ(4cN (1− cN )− λ)

2πcNλ(1− λ)
1[0,4cN (1−cN )]dλ+ max(2cN − 1, 0)δ1 (III.60)

It is easily seen that νN is the probability measure carried by SN with Stieltjes transform tN (z) defined on C \SN
by

tN (z) =
t̃N (z)

cN
+

1− cN
cNz

(III.61)

After some algebra, we obtain that

tN (z) =
z(2cN − 1) +

√
z(z − 4cN (1− cN ))

2cN (1− z)z
, z ∈ C+

tN (x) =


x(2cN − 1)−

√
x(x− 4cN (1− cN ))

2cN (1− x)x
, x < 0

x(2cN − 1) +
√
x(x− 4cN (1− cN ))

2cN (1− x)x
, x > 4cN (1− cN ), x 6= 1

(III.62)
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We also define t̃N (z) = zt̃N (z2) and tN (z) = tN (z2) which are related by

tN (z) =
t̃N (z)

cNz
+

1− cN
cNz2

. (III.63)

(I.18) implies that t̃N is the Stieljes transform of a probability measure whose support is clearly the set SN defined
by

SN = [−
√

4cN (1− cN ),
√

4cN (1− cN )] ∪ {±1}1cN>1/2 (III.64)

While tN is not a Stieltjes transform, we however mention that tN is also holomorphic outside SN . Then, we
deduce from (III.45) and (III.53) the following obvious, but useful properties.

Corollary III.3. The sequence (αN (z))N≥1 verifies

αN (z)− cN tN (z)→ 0

for z ∈ C \ R+. Moreover, we also have

αN (z)− cNtN (z)→ 0 (III.65)

α̃N (z)− t̃N (z)→ 0 (III.66)

on C+.

We also denote by ν∗ and t∗(z) the limits of νN and tN (z) when N → +∞, i.e. their expressions are obtained
by replacing cN by c∗ in (III.60) and (III.62). We have of course ν̃∗ = cNν∗ + (1 − c∗)δ0. We also remark that
if ν̂′N represents the eigenvalue distribution of matrix (WpW

∗
p )−1/2WpW

∗
f (WfW

∗
f )−1WfW

∗
p (WpW

∗
p )−1/2, then

ν̂N = cN ν̂
′
N +(1− cN )δ0. Therefore, the relation ν̃∗ = cNν∗+(1− c∗)δ0 and the convergence result (III.56) imply

that
ν̂′N → ν∗ (III.67)

almost surely.

In the following, we also denote by t∗(z) and t̃∗(z) the functions t∗(z2) and zt̃∗(z2) respectively, that can also be
seen as the limits of tN (z) and t̃N (z) when N → +∞. t̃∗(z) is of course the Stieltjes transform of a probability
measure carried by the set S∗ obtained by replacing cN by c∗ in (III.64).

We finally conclude this section by a result which can be seen as the counterpart of Lemma II.1 derived in Section
II.

Lemma III.6. For each z ∈ C\S∗, i 6= j ∈ {p, f} and for each bounded sequences (aN , bN )N≥1 of N–dimensional
deterministic vectors, it holds that

a∗N (Qii)N (z) bN − t̃N (z)a∗NbN → 0 almost surely (III.68)
a∗N (Qij)N (z) bN − cNtN (z)a∗NbN → 0 almost surely (III.69)

Moreover, these convergences hold uniformly on each compact subset of C \ S∗. The properties are still valid if
aN , bN are random bounded vectors that are independent from the noise sequence (vn)n≥1.

The proof is given in the Appendix.

B. In the presence of signal

In this section we assume that signal (un)n∈Z is present, and evaluate its influence on the eigenvalues of matrix
Πp,yΠf,y. For this, we notice that matrices Πp,y and Πf,y are finite rank perturbation of matrices Πp,v and Πf,v due
to the noise (vn)n∈Z,. Therefore, Πp,yΠf,y is itself a finite rank perturbation of Πp,vΠf,v We can thus use the same
approach as in the previous chapter. Since the useful signal (un)n∈Z is generated by the same minimal state-space
representation (I.3), we keep the notations from the Section II-B. As before, we denote Σi,N =

Yi,N√
N

= Wi,N+
Ui,N√
N

.
Πi,y and Πi,v are denoted respectively Πi and ΠW

i for i = p, f from now on. We remind that in the presence of
signal, we cannot assume that RN = IM , thus Wi = (IL ⊗ RN )1/2Wi,iid where matrix Wi,iid is built from i.i.d.
Nc(0, IM ) distributed random vector (vn,iid)n=1,...,n+2L−1. However, we recall that ΠW

i = ΠWiid
i for i = p, f . In
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the following, we will denote by ηN (rather than ηN,iid) the regularization term defined by (III.4) by replacing W
by Wiid in order to simplify the notations.
We also keep Assumptions II.1 and II.2, as well as Assumption II.3 on the limits of ∆N and Θ∗NRL

f |p,NΘN

related to the signal model. As in Section II-E, we derive the following results under condition (II.33), and briefly
justify that Theorem III.2 remains valid if some of the entries of matrix ∆∗ coincide. Finally, it appears that the
more involved Assumptions II.4, II.5, and II.6 are not needed here and can be replaced with the following milder
one.

Assumption III.1. r × r matrix GN = Θ∗N (IL ⊗R−1
N )ΘN converge towards some matrix G∗.

We now take benefit of Proposition II.2 to evaluate the behaviour of the canonical correlation coefficients between
the row spaces of matrices Up,N and Uf,N when N → +∞. For this, we recall that Γ∗ represents the limit of
Θ∗NR

L
f |p,NΘN , as well as, under condition (II.33), the limit of of ΓN = ∆N Θ̃∗f,NΘp,N∆N (see Eq. (II.37) for the

definition of ΓN ). As ∆N → ∆∗ > 0, Θ̃∗f,N Θ̃p,N converges towards the matrix Ω∗ given by

Ω∗ = ∆−1
∗ Γ∗∆

−1
∗ (III.70)

Ω∗ of course verifies ‖Ω∗‖ ≤ 1 and Rank(Ω∗) = P .

We are now in position to formulate the main result of this Section. For this, we denote by F∗ the rank P r × r
matrix defined by

F∗ = Ω∗∗(Ir + ∆−1
∗ G−1

∗ ∆−1
∗ )−1Ω∗(Ir + ∆−1

∗ G−1
∗ ∆−1

∗ )−1 (III.71)

As matrix Ω∗ verifies ‖Ω∗‖ ≤ 1, matrix F∗ satisfies ‖F∗‖ < 1. Moreover, the eigenvalues of F∗ are real and belong
to [0, 1).

Theorem III.2. • The function f∗(x) defined by

f∗(x) = x

(
t̃∗(x)

(1− c∗)t∗(x)

)2

(III.72)

is strictly increasing on [4c∗(1 − c∗), 1], verifies f∗(4c∗(1 − c∗)) = c∗
1−c∗ , f(1) = 1 if c∗ < 1

2 and f(1) =(
c∗

1−c∗

)2

if c∗ > 1
2 .

• If c∗ ≥ 1
2 , the equation

det (f∗(x) Ir − F∗) = 0 (III.73)

has no solution in (4c∗(1−c∗), 1), and for each δ > 0, almost surely, for N large enough, all the eigenvalues of
ΠpΠf belong to [0, 4c∗(1−c∗)+δ]∪ [1−δ, 1]. Among the eigenvalues contained in [1−δ, 1], 2ML−N+O(1)
are equal to 1, and, possibly, o(N) other eigenvalues converge towards 1.

• If c∗ < 1
2 , the equation (III.73) has 0 ≤ s ≤ P solutions that belong to (4c∗(1 − c∗), 1) where s is the

number of eigenvalues (taking into account the multiplicities) of F∗ that are striclty larger than c∗
1−c∗ < 1. If

ρ1,∗, . . . , ρs,∗ are the corresponding solutions, then the s largest eigenvalues of ΠpΠf converge almost surely
towards ρ1,∗, . . . , ρs,∗, and, for each δ > 0, almost surely, for N large enough, the remaining N − s ones
belong to [0, 4c∗(1− c∗) + δ].

Proof. The properties of function f∗ are proved in the Appendix. x ∈ (4c∗(1 − c∗), 1) is solution of equation

(III.72) if and only f∗(x) coincides with one of the eigenvalues of F∗. If c∗ ≥ 1
2 , f∗(x) ∈ [ c∗

1−c∗ ,
(

c∗
1−c∗

)2

] if
x ∈ [4c∗(1− c∗), 1]. As c∗

1−c∗ ≥ 1 and the eigenvalues of F∗ belong to [0, 1), equation (III.72) has no solution in
(4c∗(1− c∗), 1). If c∗ < 1

2 , f∗ ((4c∗(1− c∗), 1) coincides with the interval ( c∗
1−c∗ , 1). Therefore, equation (III.72)

has s solutions, where s represents the number of eigenvalues of F∗ strictly larger than c∗
1−c∗ .

We now establish the last statements of Theorem III.2 related to the possible eigenvalues of ΠpΠf that
escape from S∗ = [0, 4c∗(1 − c∗)] ∪ {1}1c∗>1/2. We first present the general approach of the proof. As

before, we study the squares of the positive eigenvalues of the linearised version
(

0 Πp

Πf 0

)
that escape form

[0, 2
√
c∗(1− c∗)]∪{1}1c∗>1/2. For this, for each δ > 0 small enough, we consider y ∈ (

√
4c∗(1− c∗) + δ, 1−δ)
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if c∗ > 1
2 and y ∈ (

√
4c∗(1− c∗) + δ, 1] if c∗ < 1

2 , which by Theorem III.1, cannot be, almost surely, for N large

enough, an eigenvalue of matrix
(

0 ΠW
p

ΠW
f 0

)
. We take benefit of this property to express det

(
−yIN Πp

Πf −yIN

)
in terms of det

(
−yIN ΠW

p

ΠW
f −yIN

)
and of the resolvent of matrix

(
0 ΠW

p

ΠW
f 0

)
evaluated at y, which is well

defined. As we establish almost sure convergence results in the following, we notice that the regularisation term
ηN defined by (III.4) by exchanging Wi by Wi,iid, i = p, f , can be considered to be equal to 1. Therefore, the
later resolvent coincides with QW(y) = QWiid(y) defined by (III.10) for z = y. We then evaluate the asymptotic

behaviour of det

(
−yIN Πp

Πf −yIN

)
, and deduce from this the last statements of Theorem III.2.

The key point is to use that
(
−yIN Πp

Πf −yIN

)
is a low rank perturbation of

(
−yIN ΠW

p

ΠW
f −yIN

)
. In order to evaluate

the corresponding low-rank matrix, we have first to evaluate Πi−ΠW
i for i = p, f . It is easy to see that ΣiΣ

∗
i can

be expressed as

ΣiΣ
∗
i = WiW

∗
i + (WiΘ̃i∆i,Θi)

(
0 Ir
Ir ∆2

p

)(
∆iΘ̃

∗
iW
∗
i

Θ∗

)
where we recall that Ui√

N
= Θi∆iΘ̃

∗
i is the singular value decomposition of Ui√

N
(see Eq. (II.32)).

We first establish that, almost surely, for N large enough, matrix ΣiΣ
∗
i is invertible. For this, we need the following

Lemma proved in the Appendix.

Lemma III.7. We define Ei as the 2r × 2r matrix given by

Ei =

(
0 Ir
Ir ∆2

i

)−1(
I2r +

(
0 Ir
Ir ∆2

i

)(
∆iΘ̃

∗
iΠ

W
i Θ̃i∆i ∆iΘ̃

∗
iW
∗
i (WiW

∗
i )−1Θi

Θ∗i (WiW
∗
i )−1WiΘ̃i∆i Θ∗i (WiW

∗
i )−1Θi

))
(III.74)

Then, we have

Ei −
(
−(1− cN )∆2

N Ir
Ir

1
1−cN Θ∗N (IL ⊗R−1

N )ΘN

)
→ 0 almost surely (III.75)

The determinant of the second term of the left hand side of (III.75) is equal to

det
(
−(1− cN )∆2

N

)
det

(
1

1− cN
(Θ∗N (IL ⊗R−1

N )ΘN + ∆−2
N )

)
and thus converges towards a non zero term. Therefore, almost surely, for N large enough, matrix Ei is invertible.
In the following, we denote by Di = E−1

i the inverse of Ei. The Woodbury’s identity implies that ΣiΣ
∗
i is almost

surely invertible for each N large enough, and that

(ΣiΣ
∗
i )
−1 = (WiW

∗
i )−1 − ((WiW

∗
i )−1WiΘ̃i∆i, (WiW

∗
i )−1Θi)Di

(
∆iΘ̃

∗
iW
∗
i (WiW

∗
i )−1

Θ∗i (WiW
∗
i )−1

)
,

After some algebra, we obtain that

Πi −ΠW
i = −AiDiA∗i ,

where

Ai = (−ΠW,⊥
i Θ̃i∆i,W

∗
i (WiW

∗
i )−1Θi) (III.76)

From this, we immediately get that(
−yIN Πp

Πf −yIN

)
=

(
−yIN ΠW

p

ΠW
f −yIN

)
−
(
Ap 0
0 Af

)(
Dp 0
0 Df

)(
0 A∗p
A∗f 0

)
(III.77)

or equivalently(
−yIN Πp

Πf −yIN

)
=

(
−yIN ΠW

p

ΠW
f −yIN

)(
I2N −QW(y)

(
Ap 0
0 Af

)(
Dp 0
0 Df

)(
0 A∗p
A∗f 0

))
(III.78)
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Therefore, y is an eigenvalue of
(

0 Πp

Πf 0

)
if and only if the determinant of the second term at the r.h.s. of

(III.78) vanishes, or equivalently if

det

(
I2r −

(
A∗pQW

fp (y)Ap A∗pQW
ff (y)Af

A∗fQW
pp(y)Ap A∗fQW

pf (y)Af

)(
Dp 0
0 Df

))
= 0 (III.79)

or

det

((
Ep 0
0 Ef

)
−
(
A∗pQW

fp (y)Ap A∗pQW
ff (y)Af

A∗fQW
pp(y)Ap A∗fQW

pf (y)Af

))
= 0 (III.80)

We now establish that for each y ∈ (
√

4c∗(1− c∗), 1), the left hand side of (III.80) converges towards a deterministic
term. In particular, we have the following result.

Lemma III.8. For each z ∈ C \ S∗, where S∗ = (−2
√
c∗(1− c∗), 2

√
c∗(1− c∗)) ∪ {±1}1c∗>1/2 and i 6= j ∈

{p, f} we have:

• A∗iQW
ji Ai −

−
(1− cN )(1 + zt̃N (z))

zt̃N (z) + 1− cN
∆2
N 0

0
1 + t̃N (z)z

cN (1− cN )
Θ∗N (IL ⊗R−1

N )ΘN

→ 0 almost surely

• A∗fQW
ppAp −

− (1− cN )2

z2t̃N (z)
ΓN 0

0 0

→ 0 almost surely

• A∗pQW
ff Af −

− (1− cN )2

z2t̃N (z)
Γ∗N 0

0 0

→ 0 almost surely

Moreover, almost surely, the three convergence items hold uniformly on each compact subset of C \ S∗.

Proof. The proof of this Lemma is postponed to the Section H.

We remind that Θ∗N (IL⊗R−1
N )ΘN is denoted by GN . After trivial algebra, Lemma (III.8) implies that asymptotically,

for N →∞, the "limiting form" of Eq. (III.80) is

det



(1− cN )cN

zt̃N (z) + 1− cN
∆2
N Ir

(1− cN )2

z2t̃N (z)
Γ∗N 0

Ir −1− cN + zt̃N (z)

cN (1− cN )
GN 0 0

(1− cN )2

z2t̃N (z)
ΓN 0

(1− cN )cN

zt̃N (z) + 1− cN
∆2
N Ir

0 0 Ir −1− cN + zt̃N (z)

cN (1− cN )
GN


= 0

(III.81)

Replacing zt̃N (z)+1− cN by z2cNtN (z) (see (III.63)) and taking the limits of the various terms when N → +∞
(due to Assumptions II.2, II.3, III.1), we can expect that the solutions of equation (III.80) tend to the solutions of
the limiting equation, i.e.

det



1− c∗
y2t∗(y)

∆2
∗ Ir

(1− c∗)2

y2t̃∗(y)
Γ∗∗ 0

Ir −y
2t∗(y)

1− c∗
G∗ 0 0

(1− c∗)2

y2t̃∗(y)
Γ∗ 0

1− c∗
y2t∗(y)

∆2
∗ Ir

0 0 Ir −y
2t∗(y)

1− c∗
G∗


= 0. (III.82)
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We now study the solutions of (III.82). If we interchange the second and third row blocks and second and third
column blocks, the determinant will not change and using the Schur complement formula, the l.h.s. of (III.82)
becomes

det

−y
2t∗(y)

1− c∗
G∗ 0

0 −y
2t∗(y)

1− c∗
G∗

×

det

[
1− c∗
y2t∗(y)

∆2
∗

(1− c∗)2

y2t̃∗(y)
Γ∗∗

(1− c∗)2

y2t̃∗(y)
Γ∗

1− c∗
y2t∗(y)

∆2
∗

−
−y

2t∗(y)

1− c∗
G∗ 0

0 −y
2t∗(y)

1− c∗
G∗


−1 ]

Since det

(
−y

2t∗(y)
1−c∗ G∗ 0

0 −y
2t∗(y)
1−c∗ G∗

)
6= 0, Eq. (III.82) is equivalent to

det


1− c∗
y2t∗(y)

(∆2
∗ +G−1

∗ )
(1− c∗)2

y2t̃∗(y)
Γ∗∗

(1− c∗)2

y2t̃∗(y)
Γ∗

1− c∗
y2t∗(y)

(∆2
∗ +G−1

∗ )

 = 0

Using again the Schur complement formula, we obtain that the limiting form of Eq. (III.80) is

det

(
(1− c∗)2

y4t2
∗(y)

(∆2
∗ +G−1

∗ )− (1− c∗)4

y4t̃2
∗(y)

Γ∗∗(∆
2
∗ +G−1

∗ )−1Γ∗

)
= 0,

or equivalently,

det

(
1

(1− c∗)2

t̃2
∗(y)

t2
∗(y)

− Γ∗∗(∆
2
∗ +G−1

∗ )−1Γ∗(∆
2
∗ +G−1

∗ )−1

)
= 0. (III.83)

We write that t̃∗(y) = yt̃∗(y
2) and t∗(y) = t∗(y

2), and put x = y2 ∈ (4c∗(1 − c∗), 1). Then, using (III.70), Eq.
(III.83) leads to equation (III.73).

In order to complete the proof of Theorem III.2, it remains to resort to the stability arguments in [6] and [10]. For
this, it is sufficient to use exactly the same arguments as in the proof of Corollary II.2. We thus omit the details.
We just justify the statements related to the number of eigenvalues located into [1 − δ, 1] when c∗ >

1
2 . Lemma

III.1 implies that 1 is eigenvalue of ΠW
p ΠW

f with multiplicity 2ML−N . As ΠpΠf is a finite rank perturbation of
ΠW
p ΠW

f , 1 is eigenvalue of ΠpΠf with a multiplicity equal to 2ML −N +O(1). The stability arguments in [6]
and [10] do not preclude the existence of other eigenvalues of ΠpΠf that converge towards 1. As the eigenvalue
distribution of ΠpΠf has the same limit as the eigenvalue distribution of ΠW

p ΠW
f , i.e. measure ν̃∗, for each δ > 0

small enough, 1
N#{λi(ΠpΠf ) ∈ [δ, 1]} → ν̃∗([δ, 1]) = 2c∗ − 1. Therefore, the number of remaining eigenvalues

converging towards 1 is a o(N) term, as expected. �

Theorem III.2 allows to derive immediately the conditions under which it is possible to estimate consistently P by
the number of eigenvalues of ΠpΠf that escape from S∗.

Corollary III.4. P coincides with the number of eigenvalues that escape from S∗ if and only if c∗ < 1
2 and if the

P non zero eigenvalues of F∗ are strictly larger than c∗
1−c∗

The condition that the non zero eigenvalues of F∗ are bigger than c∗
1−c∗ implies that the singular values of Ω∗ and

the eigenvalues of ∆∗ are large enough. In practice, this means that the canonical correlation coefficients between
the past and the future of u are large enough (thus making the singular values of Ω∗ large) and the r eigenvalues
of RLu,N are also large enough (thus making matrix ∆−1

∗ small). It is interesting to notice that if c∗ > 1
2 , the

largest eigenvalues of ΠpΠf cannot be used to estimate P .
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We finally mention that, as in the context of Corollary II.3, Theorem III.2 can be formulated in terms of the finite
N equivalents of matrix F∗ and function f∗(z) defined by

FN = ∆−1
N ΓN∆−1

N (Ir + ∆−1
N G−1

N ∆−1
N )−1∆−1

N ΓN∆−1
N (Ir + ∆−1

N G−1
N ∆−1

N )−1 (III.84)

and

fN (x) = x

(
t̃N (x)

(1− cN )tN (x)

)2

(III.85)

It is easily seen that the properties of function fN are similar to the properties of f∗ stated in item (i) of Theorem
III.2, parameter cN replacing c∗. We thus have the following result.

Corollary III.5. If c∗ < 1
2 , and if δ > 0 is small enough, for N large enough, s coincides with the number of

solutions of the equation det(fN (x)− FN ) = 0 that belong to (4cN (1− cN ) + δ, 1), as well as with the number
of eigenvalues of FN that are strictly larger than cN

1−cN + κ < 1 for some κ > 0 small enough. If ρ1,N , . . . , ρs,N
are the corresponding solutions, then ρ1,N , . . . , ρs,N converge almost surely towards ρ1,∗, . . . , ρs,∗. The s largest
eigenvalues of ΠpΠf have the same asymptotic behaviour than ρ1,N , . . . , ρs,N , and for each δ > 0, almost surely,
for N large enough, the remaining N − s ones belong to [0, 4cN (1− cN ) + δ].

We illustrate the above discussion by numerical experiments showing that eigenvalues outside the bulk indeed
tend to thesolutions of equation (III.73). We consider a simple case, when P = 2, K = 1 and A is diagonal
with eigenvalues a1 and a2. Figures 4, 5 represent histograms of the eigenvalues of realizations of the matrix
(R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1R̂L∗f |p,y(R̂Lf,y)−1/2, as well as the graph of the density of measure νN = 1

cN
ν̃N − 1−cN

cN
δ0

and the solutions of equation (III.73).
We take N = 2000, M = 130 and L = 4, so cN = 0.26. The eigenvalues of matrix RN are defined by
λk,N = 1/2 + π

4 cos
(
π(k−1)

2M

)
for k = 1, . . . ,M , so that matrix RN verifies 1

MTr(RN ) ' 1. Figure 4 corresponds
to a choice of (a1, a2) for which s = 1, while s = 2 in the context of Figure 5.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

Figure 4. Histogram of the eigenvalues and graph of the density of νN with 1 outlier

C. When condition (II.33) does not hold.

We briefly justify that Theorem III.2 remains valid when some of the entries of ∆∗ coincide. For this, we use the
same notations as in Section II-F. The reader may check that when condition (II.33) does not hold, the limiting
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Figure 5. Histogram of the eigenvalues and graph of the density of νN with 2 outliers

equation (III.82) is replaced by

det



1− c∗
y2t∗(y)

∆2
∗ Ir

(1− c∗)2

y2t̃∗(y)
X−1
p,NΓ∗∗X

−∗
f,N 0

Ir −y
2t∗(y)

1− c∗
X∗p,NG∗Xp,N 0 0

(1− c∗)2

y2t̃∗(y)
X−1
f,NΓ∗X

−∗
p,N 0

1− c∗
y2t∗(y)

∆2
∗ Ir

0 0 Ir −y
2t∗(y)

1− c∗
X∗f,NG∗Xf,N


= 0.

(III.86)

Following the same steps as in the proof of Theorem III.2, we obtain that (III.86) is equivalent to

det

(
1

(1− c∗)2

t̃2
∗(y)

t2
∗(y)

−X−1
p Γ∗∗X

−∗
f (∆2

∗ + (X∗fG∗Xf )−1)−1X−1
f Γ∗X

−∗
p (∆2

∗ + (X∗pG∗Xp)
−1)−1

)
= 0

(III.87)

or to

det

(
1

(1− c∗)2

t̃2
∗(y)

t2
∗(y)

− Γ∗∗X
−∗
f (∆2

∗ + (X∗fG∗Xf )−1)−1X−1
f Γ∗X

−∗
p (∆2

∗ + (X∗pG∗Xp)
−1)−1X−1

p

)
= 0

(III.88)

We remark that for i = p, f

X−∗i (∆2
∗ + (X∗i G∗Xi)

−1)−1X−1
i =

(
Xi∆

2
∗X
∗
i +G−1

∗
)−1

=
(
∆2
∗XiX

∗
i +G−1

∗
)−1

because we recall that Xi∆∗ = ∆∗Xi. As Xi,NX
∗
i,N → Ir (see (II.90)), it appears the limiting form of (III.87) is

(III.83), i.e. the final equation derived in the proof of Theorem III.2. Using again the stability arguments in [6] and
[10], we deduce that Theorem III.2 remains valid.

D. Example.

We now consider the particular models defined by (II.95) and assume that RN = σ2IM . We use again the notations
introduced to derive the properties of (II.95), and evaluate the conditions under which s = P = 1. For this, we
have first to compute matrix Ω∗. We notice that

(Ru,N )#1/2Rf |p(Ru,N )#1/2 = ΘN∆−1
∗ Γ∗∆

−1
∗ Θ∗N = ΘN∆−1

∗ κΥΥ̃∗∆−1
∗ ΘN
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where we recall that Υ coincides with the first vector e1 of the canonical basis of Cr. Therefore, a simple calculation
leads to the conclusion that matrix Θ̃∗f,N Θ̃p,N converges towards Ω∗ given by

Ω∗ =
1

δ1
e1 (aδ2

1 , b1δ2, . . . , bKδK+1) ∆−1
∗ = e1

(
a,
b1
δ1
, . . . ,

bK
δ1

)
The non zero singular value of Ω∗ is thus equal a2 + ‖b‖2

δ21
, which, by (II.96), coincides with 1. We notice that

this is not surprising because it is easily seen that the intersection of the row spaces of matrices Up and Uf is not
reduced to 0, and coincides with the one dimensional space generated by (x2, . . . , xN+1). As G∗ = I

σ2 , matrix F∗
is thus given by

F∗ =
1

1 + σ2

δ21


a
b1
δ1
...
bK
δ1


(
a,
b1
δ1
, . . . ,

bK
δ1

) (
I + σ2∆−2

∗
)−1

(III.89)

and the non zero eigenvalue λ1(F∗) of F∗ is given by

λ1(F∗) =

(
1

1 + σ2

δ21

) ( a2

1 + σ2

δ21

)
+

K∑
k=1

b2k
δ2
1

1

1 + σ2

δ2k+1


We conclude that s = P = 1 if and only c∗ <

1
2 and λ1(F∗) >

c∗
1−c∗ . In order to get more insights on this

condition, we assume that the (δk)k=1,r all coincide with δ. In this context, the ratio δ2

δ2 can be interpreted as the
signal to noise ratio. Then, λ1(F∗) >

c∗
1−c∗ is equivalent to(

1

1 + σ2

δ2

)2

>
c∗

1− c∗
(III.90)

or to
δ2

σ2
>

1(
1−c∗
c∗

)1/2

− 1

=

√
c∗√

1− c∗ −
√
c∗

=
c∗ +

√
c∗(1− c∗)

1− 2c∗
(III.91)

It is interesting to notice that for i = p, f , Yi,N = Ui,N + Vi,N , where
Ui,NU

∗
i,N

N is a rank r matrix whose r non
zero eigenvalues converge towards δ2. Therefore, usual results related to spiked models imply that the r largest
eigenvalues of

Yi,NY
∗
i,N

N escape from the support of the Marcenko-Pastur distribution [σ2(1−√c∗)2, σ2(1 +
√
c∗)

2]

if and only if the signal to noise ratio δ2

σ2 is larger than the threshold
√
c∗. Not surprisingly, condition (III.91)

appears stronger than δ2

σ2 >
√
c∗. However, if c∗ is small enough,

√
c∗√

1−c∗−
√
c∗
' √c∗ and the 2 conditions are

nearly equivalent.

IV. MONTE CARLO SIMULATIONS

Our theoretical results allow to evaluate the number s of eigenvalues of ΣfΣ∗pΣpΣ
∗
f and of ΠpΠf that escape

from the support of the limit eigenvalue distribution of WfW
∗
pWpW

∗
f and ΠW

p ΠW
f respectively. In this section,

using Monte Carlo simulation results, we evaluate the behaviour of two estimates of s, and check whether the
true value of s is in practice well estimated. We still consider the simple model defined by (II.95), and choose the
various parameters in such a way that s = 2r−1 and s = P = 1 in the context of matrices ΣfΣ∗pΣpΣ

∗
f and ΠpΠf

respectively. More precisely, we take cN = 0.25, RN = IM (that is σ = 1), K = 2 and therefore r = K + 1 = 3
and s = 5. a is chosen equal to 0.2, and we choose δ1 = δ2 = δ3 = δ and b1 = b2 = b = 1√

2
δ(1 − a2)1/2.

δ is chosen equal to δ = (w+,N − σ2)1/2 + 0.3 where w+,N = σ2

(
1 +

1 +
√

1 + 8cN
2

)
, so that the signal

to noise ratio δ2

σ2 is equal to 3.3dB. Our goal is twofold. While we know that s = 2r − 1 = 5, we first check
that in the context of ΣfΣ∗pΣpΣ

∗
f , the probability of estimating s by P = 1 is very low, thus confirming that

estimating P from the largest eigenvalues of ΣfΣ∗pΣpΣ
∗
f is irrelevant both theoretically and practically. Second,

in the context of matrix ΠpΠf , we evaluate the empirical probability that the estimates of s take the value s = P = 1.



48

1000 realisations of matrices ΣfΣ∗pΣpΣ
∗
f and ΠpΠf were generated. Table I reports the results corresponding to

the estimation of s in the context of matrix ΣfΣ∗pΣpΣ
∗
f . The first estimate s̃ of s is the number of eigenvalues of

ΣfΣ∗pΣpΣ
∗
f that are larger than x+,N (1 + ε1) for ε1 = 0.01. The second estimate, ŝ, already used in [51] and [30],

is defined by

ŝ = argmin
k

{λk+1

λk
> 1− ε2

}
− 1 (IV.1)

for ε2 = 0.05. ŝ appears to be more realistic than s̃ because, in practice, the noise variance σ2, and thus x+,N , are
not necessarily known. Table I provides the empirical probabilities that s̃ and ŝ equal to 0, 1, 2, 3, 4, 5, 6, 7, 8 for
various values of M and N and Figure 6 represents the ratios of eigenvalues λi+1/λi of a realisation of ΣfΣ∗pΣpΣ

∗
f

in terms of i − 1 when (M,N) = (600, 2400). Figure 6 indicates that the largest eigenvalue λ1 is much larger
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Figure 6. Ratios of eigenvalues λi+1/λi of ΣfΣ∗
pΣpΣ∗

f w.r.t. i− 1

than the next four ones because λ2

λ1
< 0.1. Moreover, λ2 is nearly equal to 1.3λ3, and the next eigenvalues appear

to be much closer one from each others. This confirms what we already noticed in the context of the numerical
experiment of Section II-G: as cN = 1

4 is rather small, the largest eigenvalue corresponds to the useful signal, and
appears much larger than the other 4 spurious outliers. Table I tends to confirm that (λi)i=3,4,5 are likely to be
close from x+,N while λ2 is very often significantly larger than x+,N thus explaining that s̃ and ŝ do not take the
value 1, and that s̃ and ŝ take the values 2, 3, 4, 5 (and ŝ sometimes 6, 7, 8) . These experiments tend to indicate
that the true value of s is difficult to estimate, and more importantly, that the estimates are never equal to P = 1.
This confirms that P cannot be estimated reliably from the largest eigenvalues of ΣfΣ∗pΣpΣ

∗
f .

Table I
BEHAVIOUR OF s̃ AND ŝ FOR MATRIX ΣfΣ∗

pΣpΣ∗
f

M=100
N=400

M=200
N=800

M=400
N=1600

M=600
N=2400

M=100
N=400

M=200
N=800

M=400
N=1600

M=600
N=2400

s̃ = 8 0 0 0 0 ŝ = 8 0.061 0 0 0
s̃ = 7 0 0 0 0 ŝ = 7 0.128 0 0 0
s̃ = 6 0 0 0 0 ŝ = 6 0.179 0.01 0 0
s̃ = 5 0 0.005 0.09 0.27 ŝ = 5 0.25 0.335 0.097 0
s̃ = 4 0.235 0.56 0.86 0.72 ŝ = 4 0.247 0.298 0.357 0.033
s̃ = 3 0.745 0.425 0.05 0.01 ŝ = 3 0.12 0.21 0.32 0.287
s̃ = 2 0.02 0.01 0 0 ŝ = 2 0.005 0.147 0.226 0.68
s̃ = 1 0 0 0 0 ŝ = 1 0.01 0 0 0
s̃=0 0 0 0 0 ŝ = 0 0 0 0 0

Table II is related to the estimation of s in the context of matrix ΠpΠf . ε1 and ε2 being still equal to 0.01 and
0.05, s̃ represents this time the number of eigenvalues of ΠpΠf that are larger than 4cN (1− cN )(1 + ε1), while ŝ
is defined by

ŝ = argmin
k

{λk+1

λk
> 1− ε2

}
− 1
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We also represent Fig. 7 the ratios of eigenvalues λi+1

λi
of a realisation of ΠpΠf in terms of i− 1 when (M,N) =

(600, 2400). The largest eigenvalue appears significantly larger than λ2, and the other eigenvalues are quite close
one from each others. This behaviour is confirmed by the behaviour of s̃ and ŝ which take the value 1 with high
probability, thus confirming the relevance of the estimate of P based on the largest eigenvalues of ΠpΠf . We notice
that in the context of matrix ΠpΠf , the estimate s̃ is in practice relevant because 4cN (1− cN ) is of course known.

Table II
BEHAVIOUR OF s̃ AND ŝ FOR MATRIX ΠpΠf

M=100
N=400

M=200
N=800

M=400
N=1600

M=600
N=2400

M=100
N=400

M=200
N=800

M=400
N=1600

M=600
N=2400

s̃ = 4 0 0 0 0 ŝ = 4 0 0.007 0.007 0.008
s̃ = 3 0 0 0 0 ŝ = 2 0 0.013 0.008 0.017
s̃ = 2 0.001 0 0 0 ŝ = 2 0.07 0.012 0 0.01
s̃ = 1 0.999 1 1 1 ŝ = 1 0.91 0.966 0.974 0.965
s̃ = 0 0 0 0 0 ŝ = 0 0.02 0.002 0.011 0
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Figure 7. Ratios of eigenvalues λi+1/λi of Πp,yΠf,y w.r.t. i− 1

V. CONCLUSION

In this paper, motivated by the problem of estimating consistently the minimal dimension P of the state space
realizations of the high-dimensional time series y, we have studied the behaviour of the largest singular values of
the empirical autocovariance matrix R̂Lf |p,y as well as of its normalized version (R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1/2. In
the high-dimensional asymptotic regime defined in Section I-C, and under certain technical assumptions, we have
shown that all the singular values of R̂Lf |p,y are less than a certain threshold, except a finite number s of outliers.
Unfortunately, s is not related to P , and, when P = 1, we have built simple examples for which s can take any odd
value. We also showed that the singular values of the normalized matrix (R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1/2 lie almost
surely in a neighbourhood of the interval [0, 2

√
c∗(1− c∗)], but this time, we proved that the number s of outliers

belong to {0, 1, . . . , P}, and that s = P if c∗ < 1
2 and if the P non zero eigenvalues of the rank P matrix F∗

defined by (III.71) are larger than c∗
1−c∗ . Under this condition, which, in practice, means that the useful signal u

is powerful enough and its non zero canonical correlation coefficients between the past and the future are large
enough, P can be estimated consistently by the number of singular values of (R̂Lf,y)−1/2R̂Lf |p,y(R̂Lp,y)−1/2 that
are larger than 2

√
c∗(1− c∗)(1 + ε) for a certain parameter ε small enough. These results are established using a

general approach already proposed in the literature in the context of simple large random matrix models. However,
the random matrix models considered in the present paper are quite complicated, and we needed to solve a number
of non obvious new technical issues. We have also provided numerical simulation results that confirm the practical
relevance of our theoretical results. We finally mention that the existence of a consistent estimate of P allows to
consider the problem of estimating other parameters of the state space realizations of the useful signal u. This is
a topic for future research.
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APPENDIX

A. Proof of Lemma III.4

To prove that matrices E{Qij}, i, j = p, f are diagonal, we consider the new set of vectors zk = e−ikθvk and
construct the matrices Zp, Zf in the same way as Wp and Wf . It is clear that sequence (zn)n∈Z has the same
probability distribution that (vn)n∈Z. Zp and Zf can be expressed as

Zp =

e
−iθIM . . . 0

...
. . .

...
0 . . . e−LiθIM

Wp

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ

 ,

Zf = e−Liθ

e
−iθIM . . . 0

...
. . .

...
0 . . . e−LiθIM

Wf

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ

 .
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Then

ZiZ
∗
i =

e
−iθIM . . . 0

...
. . .

...
0 . . . e−LiθIM

WiW
∗
i

e
iθIM . . . 0

...
. . .

...
0 . . . eLiθIM

 , (A.1)

(ZiZ
∗
i )−1 =

e
−iθIM . . . 0

...
. . .

...
0 . . . e−LiθIM

 (WiW
∗
i )−1

e
iθIM . . . 0

...
. . .

...
0 . . . eLiθIM

 (A.2)

as well as φ(ZfZ
∗
f ) = φ(WfW

∗
f ) and φ(ZpZ

∗
p ) = φ(WpW

∗
p ) where φ is defined by (III.5). Therefore, ηz coincides

with η. Next we define Πz
i = Z∗i (ZiZ

∗
i )−1Zi, i = {p, f}. The equality

Πz
i =

1 . . . 0
...

. . .
...

0 . . . e(N−1)iθ

Πi

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ

 (A.3)

holds for i = {p, f}. We define matrix QZ =
(
−zIML ηzΠzp
ηzΠzf −zIML

)−1

and obtain immediately that

E{QZ} =

(
A 0
0 A

)
E{Q}

(
A∗ 0
0 A∗

)
,E{ηNQZ} =

(
A 0
0 A

)
E{ηNQ}

(
A∗ 0
0 A∗

)
where the N ×N matrix A is defined as

A =

1 . . . 0
...

. . .
...

0 . . . e(N−1)iθ


Obviously for each N ×N block E{Qij

z}, i, j = {p, f}, we have

E{Qij
z} = AE{Qij}A∗,E{ηNQij

z} = AE{ηNQij}A∗

and

E{ηNΠz
hQij

z} = AE{ηNΠhQij}A∗

for h = {p, f}. Since E{QZ} = E{Q}, E{ηNQZ} = E{ηNQ}, and E{ηNΠz
hQij

z} = E{ηNΠhQij}, for 1 ≤
k, l ≤ N and i, j, h = {p, f}, we have

E{Qij
k,l} = e(k−1)iθE{Qij

k,l}e−(l−1)iθ = e(k−l)iθE{Qij
k,l}

E{ηNQij
k,l} = e(k−1)iθE{ηNQij

k,l}e−(l−1)iθ = e(k−l)iθE{ηNQij
k,l}

E{ηN (ΠhQij)
k,l} = e(k−1)iθE{ηN (ΠhQij)

k,l}e−(l−1)iθ = e(k−l)iθE{ηN (ΠhQij)
k,l}

This proves that E{Qij
k,l} = 0, E{ηNQij

k,l} = 0 and E{ηN (ΠhQij)
k,l} = 0 if k 6= l, as expected.

We can prove similarly that matrices E{ηN (WiW
∗
i )−1}, E{ηNΠi} and E{ηNQijW

∗
h (WhW

∗
h )−2Wh} are di-

agonal. We just verify that E(ηNW
∗
p (WpWp)

−1) = 0, and omit the proof of E(ηN QijW
∗
h (WhW

∗
h )−1) =

E(ηN Πk QijW
∗
h (WhW

∗
h )−1) = 0. It is clear that

Z∗p (ZpZ
∗
p )−1 =

1 . . . 0
...

. . .
...

0 . . . ei(N−1)θ

W ∗p (WpW
∗
p )−1

e
iθIM . . . 0

...
. . .

...
0 . . . eLiθIM


The equalities ηz = η and E(ηzZ∗p (ZpZ

∗
p )−1) = E(ηW ∗p (WpW

∗
p )−1) lead immediately to(

E(ηW ∗p (WpW
∗
p )−1)

)
n,l

= ei(n−1+l)θ
(
E(ηW ∗p (WpW

∗
p )−1)

)
n,l

for each 1 ≤ n ≤ N and 1 ≤ l ≤ L. As
θ can be chosen arbitrarily, we obtain that

(
E(ηW ∗p (WpW

∗
p )−1)

)
n,l

= 0 as expected.
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To prove (III.15) to (III.18), we consider the sequence (zn)n∈Z defined by zn = v−n+N+2L for each n. Again, the
distributions of z and v coincide, and it is easy to see that for i ∈ {p, f}, Zi is given by

Zi =

 0 . . . IM
...

...
IM . . . 0

Wĩ

0 . . . 1
...

...
1 . . . 0

 ,

and as consequence

ZiZ
∗
i =

 0 . . . IM
...

...
IM . . . 0

WĩW
∗
ĩ

 0 . . . IM
...

...
IM . . . 0


Therefore, ZiZ∗i and WĩW

∗
ĩ

have the same eigenvalues, which implies that φ(ZiZ
∗
i ) = φ(WĩW

∗
ĩ

), and that the
new regularization term ηz = det φ(ZpZ

∗
p )det φ(ZfZ

∗
f ) will remain the same, i.e. ηz = η. It is easy to see that

Πz
p = AΠfA and Πz

f = AΠpA, where this time A =

0 . . . 1
...

...
1 . . . 0

. From this, we obtain that

E{QZ} =

(
A 0
0 A

)
E
{(−zIN ηΠf

ηΠp −zIN

)−1 }(
A 0
0 A

)
.

Using the inverse block matrix formula and the fact that E{QZ} = E{Q}, we obtain that E{Qpp} = AE{Qff}A
and E{Qpf} = AE{Qfp}A. This immediately implies that for every 1 ≤ k ≤ N and h, i, j = {p, f}
we have E{(Qij)

k,k} = E{(Qĩ̃j)
N+1−k,N+1−k} and E{ηN (ΠhQij)

k,k} = E{ηN (Πh̃Qĩ̃j)
N+1−k,N+1−k}. As a

consequence, E{TrQij} = E{TrQĩ̃j} and E{ηNΠhQij} = E{ηNΠh̃Qĩ̃j} as expected.

B. Proof of Lemma III.5

The lemma is established using the integration by parts formula and the Poincaré-Nash inequality. As the partial
derivatives of η with respect to elements of Wp,Wf will appear, we first state the following useful lemma. We
recall that φ and EN are defined respectively by (III.5) and (III.9).

Lemma A.1. Let Ω be the event defined by:

Ω = EN ∩ {all eigenvalues of WpW
∗
p and WfW

∗
f ∈ Supp(φ)}. (A.4)

Then it holds that
∂ηN
∂Wm

i,j

= 0 on Ωc (A.5)

and

E


∣∣∣∣∣ ∂ηN∂Wm

i,j

∣∣∣∣∣
2
 = O

(
1

Nk

)
(A.6)

for all 1 ≤ m ≤M , 1 ≤ i ≤ 2L, 1 ≤ j ≤ N and each k.

The proof of the lemma is an adaptation of Lemma 11 and calculations from Proposition 4 of [23].

We just prove Lemma III.5 for i = p. In the following, we drop index i and denote G = (WW ∗)−1. To prove the
lemma, we apply the integration by parts formula (I.25) to ηNGm1m2

i1i2
Wm2
i2,j2

W̄m3
j1,i3

considered as a function of the
entries of the 2ML×N matrix WN whose elements are the complex conjugates of those of WN . We recall that
the correlation structure of the elements of WN is given by (III.3).

E{ηNGm1m2
i1i2

Wm2
i2,j2

W̄m3
j1,i3
} =

∑
m′,i′,j′

E{W̄m3
j1,i3

Wm′

i′,j′}

×

(
E

{
∂ηN
∂Wm′

i′,j′
Gm1m2
i1i2

Wm2
i2,j2

}
+ E

{
ηN

∂Gm1m2
i1i2

∂Wm′
i′,j′

Wm2
i2,j2

}
+ E

{
ηNG

m1m2
i1i2

∂Wm2
i2,j2

∂Wm′
i′,j′

})
(A.7)
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Lemma A.1 implies that the first term of the r.h.s of (A.7) is of order O(N−k) for each k. Indeed,

E

{
∂ηN
∂Wm′

i′,j′
Gm1m2
i1i2

Wm2
i2,j2

}
= E

{
1Ω

∂ηN
∂Wm′

i′,j′
Gm1m2
i1i2

Wm2
i2,j2

}
where we recall that Ω is defined by (A.4). The Schwartz inequality leads to∣∣∣∣∣E

{
1Ω

∂ηN
∂Wm′

i′,j′
Gm1m2
i1i2

Wm2
i2,j2

}∣∣∣∣∣
2

≤ E


∣∣∣∣∣ ∂ηN
∂Wm′

i′,j′

∣∣∣∣∣
2
E

{∣∣1ΩG
m1m2
i1i2

Wm2
i2,j2

∣∣2} (A.8)

On Ω, the eigenvalues of WW ∗ belong to ((1 − √c∗)2 − 2ε, (1 +
√
c∗)

2 + 2ε), so that ‖G1Ω‖ and ‖W1Ω‖ are
bounded by a nice constant. Therefore

∣∣1ΩG
m1m2
i1i2

Wm2
i2,j2

∣∣ has the same property. After some calculations, (A.7)
becomes

E{ηNGm1m2
i1i2

Wm2
i2,j2

W̄m3
j1,i3
} =

1

N

∑
m′,i′,j′

δm′,m3δi3+j1,i′+j′

×
(
−E

{
ηNG

m1m
′

i1i′
(W ∗G)m2

j′,i2
Wm2
i2,j2

}
+ E{ηNGm1m2

i1i2
δm′,m2

δi2,i′δj2,j′}
)

+O
(

1

Nk

)
(A.9)

Defining l = i3 − i′ = j′ − j1 which runs from −L + 1 to L − 1 and taking into account (I.12), we get
δm′,m3δi3+j1,i′+j′ = (J

(l)
L ⊗ IM )m

′m3

i′i3
(J

(l)
N )j1j′ . Then, after summing over i′, j′ and m′, (A.9) becomes

E{ηNGm1m2
i1i2

Wm2
i2,j2

W̄m3
j1,i3
} = − 1

N
E
{
ηN

(
G(J

(l)
L ⊗ IM )

)m1m3

i1i3
(J

(l)
N W ∗G)m2

j1,i2
Wm2
i2,j2

}
+

1

N
E{ηNGm1m2

i1i2
(J

(l)
L ⊗ IM )m2m3

i2i3
(J

(l)
N )j1j2}+O

(
1

Nk

)
Summing both sides over i2,m2, we obtain that

E{ηN (GW )m1
i1j2

W̄m3
j1,i3
} = − 1

N

L−1∑
l=−(L−1)

E
{
ηN (G(J

(l)
L ⊗ IM ))m1m3

i1i3
(J

(l)
N Π)j1j2

}

+
1

N

L−1∑
l=−(L−1)

E
{
ηN (G(J

(l)
L ⊗ IM ))m1m3

i1i3
(J

(l)
N )j1j2

}
+O

(
1

Nk

)
. (A.10)

At this point, in order to prove (III.19), we take j2 = j1 and sum over this index. Since GWW ∗ = IML, we have

E{ηN}IML = −
L−1∑

l=−(L−1)

E
{
ηNG(J

(l)
L ⊗ IM )

1

N
Tr(J

(l)
N Π)

}
+

L−1∑
l=−(L−1)

E
{
ηNG(J

(l)
L ⊗ IM )

1

N
TrJ

(l)
N

}
+O

(
1

Nk

)

Obviously 1
NTrJ

(l)
N is equal to 0 for l 6= 0 and to 1 if l = 0, and, as was discussed above, we can replace E{ηN}

by 1 on the l.h.s. and ηN by η2
N on the first term of the r.h.s. while adding a O(N−k) term. Then

IML = −
L−1∑

l=−(L−1)

E
{
ηNG(J

(l)
L ⊗ IM )

}
E
{

1

N
Tr(ηNJ

(l)
N Π)

}
−

L−1∑
l=−(L−1)

E
{
ηNG(J

(l)
L ⊗ IM )

1

N
Tr(ηNJ

(l)
N Π)◦

}

+ E {ηNG}+O
(

1

Nk

)
(A.11)

Lemma III.4 implies that E{ηNΠ} is diagonal, so E
{

1

N
Tr(ηNJ

(l)
N Π)

}
= 0 for all l 6= 0 and moreover since

1
NTrΠ = cN it is easy to see that E

{
1
NTr(ηNΠ)

}
= cN +O(N−k) for each k. Thus, (A.11) leads to

E
{
ηN (WW ∗)−1

}
=

1

1− c
IML+

1

1− c

L−1∑
l=−(L−1)

E
{
ηNG(J

(l)
L ⊗ IM )

1

N
Tr(ηNJ

(l)
N Π)◦

}
+O

(
1

Nk

)
(A.12)
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Finally, we show that each element of matrix
∑

E
{
ηNG(J

(l)
L ⊗ IM ) 1

NTr(J
(l)
N (ηNΠ)◦)

}
is of order O(N−3/2).

For this, we apply the Schwartz inequality:∣∣∣∣E{(fm1
i1

)∗ηNG(J
(l)
L ⊗ IM )fm2

i2

1

N
Tr(ηNJ

(l)
N Π◦)

}∣∣∣∣ ≤ (Var
(

(fm1
i1

)∗ηNG(J
(l)
L ⊗ IM )fm2

i2

)
Var

(
1

N
Tr(ηNJ

(l)
N Π)

))1/2

In order to evaluate these variances, one should follow the steps of the proof of Proposition 3.1 in [32]. In [32],
matrix ηG is replaced by the resolvent of WW ∗ evaluated at z ∈ C+. The proof of Proposition 3.1 in [32] uses
the fact that the norm of this resolvent is bounded by 1

Imz , a result that is of course not true in the present context.
However, the above upper bound is replaced by ηNG ≤ κIN (see (III.6)). This allows to obtain the same estimations
as in Proposition 3.1 in [32]:

Var
(

(fm1
i1

)∗ηNG(J
(l)
L ⊗ IM )fm2

i2

)
= O

(
1

N

)
Var

(
1

N
Tr(ηNJ

(l)
N Π)

)
= O

(
1

N2

)
Var

(
1

ML
TrηNG(J

(l)
L ⊗ IM )

)
= O

(
1

N2

)
and to conclude that (III.19) holds.
To estimate the expectation of (ML)−1TrηN (WW ∗)−1 we take the normalized trace from both sides of (A.12)
and use again the Schwartz inequality:

∣∣∣∣E{ 1

ML
Tr(ηNG(J

(l)
L ⊗ IM ))

1

N
Tr(ηNJ

(l)
N Π◦)

}∣∣∣∣ ≤ (Var

(
1

ML
TrηNG(J

(l)
L ⊗ IM )

)
Var

(
1

N
Tr(ηNJ

(l)
N Π)

))1/2

= O
(

1

N2

)
Then we get immediately (ML)−1TrE{ηN (WiW

∗
i )−1} = (1− cN )−1 +O( 1

N2 ).
Finally, to prove (III.20) we return to equation (A.10) but this time we take m1 = m3, i1 = i3 and sum both sides
over these indexes:

E{ηNΠ} = −cN
L−1∑

l=−(L−1)

E
{

1

ML
Tr(ηNG(J

(l)
L ⊗ IM ))(J

(l)
N Π)

}

+ cN
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E
{

1

ML
Tr(ηNG(J
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L ⊗ IM ))J

(l)
N

}
+O

(
1

Nk

)

Analogous to what we have seen above, we replace ηN by η2
N in the first term of the r.h.s. and remark that

E{Tr(ηNG(J
(l)
L ⊗ IM ))} = 0 for all l 6= 0, since E{ηNG} is block diagonal. Moreover E{(ML)−1Tr(ηNG)} =

(1− cN )−1 +O( 1
N2 ), so that, after trivial algebra, we get

E{ηNΠ} = cNIN +O
(

1

N2

)
+

L−1∑
l=−(L−1)

E
{

1

ML
Tr(ηNG(J

(l)
L ⊗ IM ))◦ηNJ

(l)
N Π

}

The Schwartz inequality allows to obtain (III.20).

C. Proof of Proposition III.1

We just establish (III.21). For this, we evaluate each entry of E (QppηΠp) by using the integration by parts formula
(I.25). In this formula, each entry E{(QppηΠp)rs} of E (QppηΠp) is considered as a function of the entries of
the 2ML×N matrix WN whose elements are the complex conjugate of those of WN .
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E{(QppηΠp)rs} =
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∑
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∂
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Wm2
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}
(A.13)

Here we take the derivative with respect to each element of W = (WT
p ,W

T
f )T , so index i3 takes values from 1 to

2L. We denote each term of the r.h.s. of (A.13) without expectation by (T1)rs, (T2)rs, (T3)rs, (T4)rs respectively
and treat them separately. In order to simplify the notations, for i = 1, 2, 3, 4, we denote (Ti)rs by Ti in the
following calculations.

T1 =
1

N

∑
δm1,m3

δi1+t,i3+uQ
rt
ppη

(
(WpW

∗
p )−1

)m1m2
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∂Wm2
p,i2s

∂Wm3
i3u

=
1

N

∑
δm1,m2

δi1+t,i2+sQ
rt
ppη

(
(WpW

∗
p )−1

)m1m2

i1i2

We define l = i1 − i2 and rewrite δi1+t,i2+s = δi1−i2,lδs−t,l = (J
(l)
M )i2i1(J

(l)
N )ts. Taking into account (I.12), we

obtain

T1 =
1

N

∑
(J

(l)
N )ts(J

(l)
L ⊗ IM )m2m1

i2i1
Qrt

ppη
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(WpW

∗
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)m1m2

i1i2
=
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(
QppJ

(l)
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)
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1

N
Tr
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(J
(l)
L ⊗ IM )η(WpW

∗
p )−1

)
(A.14)

We take the expectation and obtain

E{T1} =

L−1∑
l=−(L−1)

E
{(

QppJ
(l)
N

)
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} 1

N
E
{

Tr
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(J
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L ⊗ IM )η(WpW

∗
p )−1
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+
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E
{(

Q◦ppJ
(l)
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)
rs
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N
Tr
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(J
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L ⊗ IM )η(WpW

∗
p )−1

)}
We denote the second term of the r.h.s by T E1 . According to (III.19), E{(ML)−1Trη(WpW

∗
p )−1} = 1

1−cN +O( 1
N2 ).

Therefore, if l = 0 we have

1

N
E{Tr(η(WpW

∗
p )−1)} =

cN
(1− cN )

+O
(

1

N2

)
and if l 6= 0, we have 1

NE
{

Tr
(

(J
(l)
L ⊗ IM )η(WpW

∗
p )−1

)}
= 0 by Lemma III.4. Lemma III.3 thus leads to

E{T1} =
cN

1− cN
E
{

(Qpp)rs

}
+Oz2

(
1

N2

)
+ T E1 . (A.15)

For second term, we have

T2 = − 1

N
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ppη
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We define l = i1 − i3. Then, δi1+t,i3+u = δi1−i3,lδu−t,l = (J
(l)
M )i3i1(J

(l)
N )tu. This gives us

T2 = −
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(
ηQppJ

(l)
N Πp

)
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Tr
(

(J
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L ⊗ IM )(WpW
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)
(A.16)
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Taking the expectation and replacing η by η2, we have for each k ≥ 1,

E{T2} = −
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E
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)
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} 1
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N
Tr
(
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∗
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)}
+Oz2

(
1

Nk

)
As previously, we denote the second term of the r.h.s. by T E2 and notice that in the first term of the r.h.s., according
to Lemma III.4, all the terms corresponding to l 6= 0 are zeros, and E{(ML)−1Trη(WpW

∗
p )−1} = 1

1−cN +O( 1
N2 ).

Therefore, we obtain that

E{T2} = − cN
1− cN

E
{

(ηQppΠp)rs

}
+ T E2 +Oz2

(
1

N2

)
(A.17)

To deal with the third term, T3, we first should find the derivatives of the resolvent w.r.t. the entries of W . For
this, we write

∂Q = −Q∂

(
0 ηΠp

ηΠf 0

)
Q = −

(
Qpf∂(ηΠf )Qpp + Qpp∂(ηΠp)Qfp Qpf∂(ηΠf )Qpf + Qpp∂(ηΠp)Qff

Qff∂(ηΠf )Qpp + Qfp∂(ηΠp)Qfp Qff∂(ηΠf )Qpf + Qfp∂(ηΠp)Qff

)
(A.18)

and evaluate the derivative with respect to the element Wm3
i3u

. As was discussed before, since ‖Q‖ and ‖Πi‖, i = p, f ,
are bounded (see Lemma III.3), the expectation of the entries of the terms containing ∂η

∂W
m3
i3u

are Oz2(N−k) terms
for each k ≥ 1. This justifies that we gather all this terms together in a matrix, denoted E , whose entries are
Oz2(N−k) for any k. We also need to evaluate the derivative of projectors Πp and Πf . For this, we use classical
perturbation theory results ([28], see also Theorem 6 in [1] for the statement of the result), and obtain

δΠp = Π⊥p δ(W
∗
pWp)(W

∗
pWp)

# + (W ∗pWp)
#δ(W ∗pWp)Π

⊥
p (A.19)

where (W ∗pWp)
# is the pseudoinverse of W ∗pWp, which, in this case, is equal to W ∗p (WpW

∗
p )−2Wp. The expression

of δΠf is similar. The derivative with respect to Wm3
i3u

is thus given by
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∗
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euΠ⊥p
)
1i3≤L.

In this context, fm3
i3

is a vector of the canonical basis of CML rather than of C2ML. Since Π⊥pW
∗
p = 0 the first

term disappears and we obtain
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For Πf the formula is analogous, but fm3
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is replaced by fm3
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Putting these expressions in (A.18), we get that
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We are now ready to address the term T3. We first we sum over i2,m2, and obtain that T3 can be written as
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where E3 represents the contribution of matrix E to T3. In order to express the first term of the r.h.s. of (A.21),
we again define l = i1 − i3 which belongs to {−(L− 1), . . . , L− 1} and notice that δi1+t,i3+u = δi1−i3,lδu−t,l =

(J
(l)
L )i3i1(J

(l)
N )tu. As for second term of the r.h.s. of (A.21), we first exchange i3 > L by i3 −L which runs from

1 to L. The second term becomes
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We again put l = i1 − i3 and remark that δi1+t,i3+L+u = δi1−i3,lδu−t,l−L = (J
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L )i3,i1(J

(l−L)
N )tu. Therefore, we

obtain that T3 is equal to
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Taking the expectation, we obtain that
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where, as above, T E3 is defined by
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According to Lemma III.4, E{ηΠ⊥p Qfp} and E{ηΠ⊥f Qpp} are diagonal. Therefore, the traces of these matrices
multiplied by J (k)

N for k 6= 0 are zeros. This leads to

E{T3} = −E
{
η
(
QppW

∗
p (WpW

∗
p )−2Wp

)
rs

} 1

N
E
{
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(
ηΠ⊥p Qfp

)}
+ E{E3}+ T E3 . (A.22)

Finally, the various terms of T4 contain the terms ( ∂η
∂W

m3
i3u

)i3=1,...,2L,m3=1,...,M . Therefore, T4 is denoted E4, and

E(T4) = E(E4) = Oz2(N−k) for each k.

Combining (A.15), (A.17), (A.22), we have thus obtained that

E
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ηΠ⊥p Qfp

)}
+

1

1− cN
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where (∆pp)rs represents the term

(∆pp)rs = (1− cN )

[
E{T E1 + T E2 + T E3 }+ E{E3}+ E{E4}+Oz2(

1

N2
)

]
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obtained by gathering the various error terms defined in the evaluation of (Ti)i=1,2,3,4. Therefore, we eventually
get the following expression of matrix E

{
QppηΠp

}
:

E
{

QppηΠp

}
=

cN
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} 1

N
E
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(
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)}
+

1

1− cN
∆pp

which leads immediately to (III.21).

It remains to establish the properties of matrix ∆pp. According to Lemma III.4, E{QppηΠp},E{Qpp} and
E{ηQppW

∗
p (WpW

∗
p )−2Wp} are diagonal. Therefore, (III.21) implies that ∆pp is also diagonal. In order to evaluate

the order of magnitude of the entries of ∆pp and of 1
NTr(∆pp), we first prove the next lemma which is based

on the Poincaré-Nash inequality.

Lemma A.2. Let (FN )N≥1 and (GN )N≥1 be sequences of deterministic N ×N matrices such that supN ‖FN‖,
supN ‖GN‖ ≤ κ, and consider sequences of deterministic N–dimensional vectors (a1,N )N≥1, (a2,N )N≥1 such
that supN‖ai,N‖ ≤ κ for i = 1, 2. Then, for each z ∈ C+ and i, j, h = {p, f}, it holds that
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, (A.23)
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, (A.24)
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, (A.25)
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Var {a∗1Qija2} = Oz2
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, (A.28)
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, (A.29)
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. (A.30)

Proof. We just prove (A.23) for Qpp. The proofs of the other items are omitted. We denote by ξ the term
ξ = 1

NTrFQpp. The Poincaré-Nash inequality (I.2) leads to
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We just evaluate the second term of the r.h.s., denoted by φ. The derivative of ξ can be found with the help of
(A.20):
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φ is clearly the sum of four similar terms. We just evaluate
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(A.31)

where 1 ≤ i1, i2 ≤ L. Now we again denote l = i1 − i2 = j2 − j1 which lies in (−L+ 1, L− 1) and remark that∑
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(A.31) as

1

N3

L−1∑
l=−(L−1)

E
{
η2TrΠ⊥p QfpFQppW

∗
p (WpW

∗
p )−1(J

(l)
L ⊗ IM )(WpW

∗
p )−1WpQ

∗
ppF

∗Q∗fpΠ⊥p J
(l)
N

}
(A.32)

For each N ×ML matrices A and B, the Schwartz inequality and the inequality between arithmetic and geometric
means lead to ∣∣∣∣ 1

N
TrA(IM ⊗ J∗(l)L )B∗J

∗(l)
N

∣∣∣∣ ≤ 1

2N
TrA(IM ⊗ J∗(l)L J

(l)
L )A∗ +

1

2N
TrBJ

∗(l)
N J

(l)
N B∗.

Therefore, since IM ⊗ J∗(l)L J
(l)
L ≤ IML and J∗(l)N J

(l)
N ≤ IN , the inequality∣∣∣∣ 1

N
TrA(IM ⊗ J∗(l)L )B∗J

∗(l)
N

∣∣∣∣ ≤ C

2N
(TrA∗A+ TrB∗B). (A.33)

holds. We take A = B = Π⊥p QfpFQppW
∗
p η(WpW

∗
p )−1, and have to check that N−1E{TrAA∗} = O2

z(1). For
this, we remark that ηW ∗pWp ≤ ((1 +

√
c∗)

2 + 2ε)IN and η2(WpW
∗
p )−2 ≤ ((1−√c∗)2 − 2ε)−2IML (see (III.6)).

Therefore, W ∗p η
2(WpW

∗
p )−2Wp ≤ κIN , and

1

N
E
{

TrΠ⊥p QfpFQppW
∗
p η

2(WpW
∗
p )−2WpQ

∗
ppF

∗Q∗fpΠ⊥p
}

= O2
z(1) (A.34)

as expected. This completes the proof of (A.23). �

We return to the evaluation of the (diagonal) entries of ∆pp. As the terms E(E3) and E(E4) are O2
z(

1
Nk

) for each
k, it remains to evaluate the order of magnitude of the terms (T Ei )rr for i = 1, 2, 3 defined by (A.15,A.17,A.22)
respectively when r = s. We start with (T E1 )rr and use Schwartz inequality:

|(T E1 )rr| =

∣∣∣∣∣
L−1∑

l=−(L−1)

E
{(

Q◦ppJ
(l)
N

)
rr

1

N
Tr
(

(IM ⊗ J (l)
M )η(WpW

∗
p )−1

)} ∣∣∣∣∣
≤

L−1∑
l=−(L−1)

(
Var

((
QppJ

(l)
N

)
rr

)
Var

(
1

N
Tr
(

(IM ⊗ J (l)
M )η(WpW

∗
p )−1

)))1/2

We apply (A.28) for a1 = er and a2 = J
(l)
N er and take into account that Var( 1

NTr((IM ⊗ J (l)
M )η(WpW

∗
p )−1)) =

O(N−2). Then

|(T E1 )rr| ≤ O2
z

(
1

N3/2

)
(A.35)

As for (T E2 )rr, we have

|(T E2 )rr| =

∣∣∣∣∣
L−1∑

l=−(L−1)

E
{(

ηQppJ
(l)
N Πp

)◦
rr

1

N
Tr
(

(IM ⊗ J (l)
M )η(WpW

∗
p )−1

)} ∣∣∣∣∣
≤

L−1∑
l=−(L−1)

(
Var

((
ηQppJ

(l)
N Πp

)
rr

)
Var

(
1

N
Tr
(

(IM ⊗ J (l)
M )η(WpW

∗
p )−1

)))1/2
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From (A.30) we get immediately

|(T E2 )rr| = O2
z

(
1

N3/2

)
(A.36)

For T E3 we obtain

|(T E3 )rr| =

∣∣∣∣∣
L−1∑

l=−(L−1)

E
{(

ηQppW
∗
p (WpW

∗
p )−1(IM ⊗ J (l)

M )(WpW
∗
p )−1Wp

)◦
rr

1

N
Tr
(
ηJ

(l)
N Π⊥p Qfp

)}

+

L−1∑
l=−(L−1)

E
{(

ηQpfW
∗
f (WfW

∗
f )−1(IM ⊗ J (l)

M )(WpW
∗
p )−1Wp

)◦
rr

1

N
Tr
(
ηJ

(l−L)
N Π⊥f Qpp

)} ∣∣∣∣∣
≤

L−1∑
l=−(L−1)

(
Var

((
ηQppW

∗
p (WpW

∗
p )−1(IM ⊗ J (l)

M )(WpW
∗
p )−1Wp

)
rr

)
Var

(
1

N
Tr
(
ηJ

(l)
N Π⊥p Qfp

)))1/2

+

L−1∑
l=−(L−1)

(
Var

((
ηQpfW

∗
f (WfW

∗
f )−1(IM ⊗ J (l)

M )(WpW
∗
p )−1Wp

)
rr

)
Var

(
1

N
Tr
(
ηJ

(l)
N Π⊥f Qpp

)))1/2

from what, using again (A.27) and (A.25), we immediately get

|(T E3 )rr| = O2
z

(
1

N3/2

)
(A.37)

To evaluate the normalized trace of ∆pp, we still use the Schwartz inequality, and take benefit of the estimates
(A.23)-(A.26) to improve the rate of convergence of 1

NTr∆pp.

D. Proof of Proposition III.3

In order to evaluate α̃N − t̃N , it is natural to take the difference between equations (III.44) and (III.52):

(α̃N − t̃N )
(
(1− z)z(α̃N + t̃N ) + 2(1− cN )− z

)
= Oz

(
1

N2

)
We remind that α̃N = αN − 1−cN

z +Oz(N−k) (see (III.45)) and rewrite the last equation as

(α̃N − t̃N )
(
(1− z)zαN − (1− z)(1− cN ) + (1− z)zt̃N + 2(1− cN )− z +Oz(N−k)

)
= Oz

(
1

N2

)
or equivalently as

(α̃N − t̃N )
(
(1− z)zαN − (1− z)(1− cN ) + (1− z)zt̃N + 2(1− cN )− z

)
+(α̃N − t̃N )Oz

(
1

Nk

)
= Oz

(
1

N2

)
Since α̃N , t̃N and αN (see Remark III.3) are the Stieltjes transforms of a positive measures carried by R+, we
obtain that αN = Oz(1), α̃N = Oz(1), t̃N = Oz(1), and that (α̃N − t̃N )Oz(N−k) = Oz(N−k). (α̃N − t̃N ) can
thus be written as

α̃N − t̃N =
Oz
(
N−2

)
(1− z)zαN − (1− z)(1− cN ) + (1− z)zt̃N + 2(1− cN )− z

We now evaluate the denominator for z ∈ C+. For this, we return to (III.52) and write:

(1− z)zt̃N + 2(1− cN )− z = − (1− cN )2

zt̃N

Moreover, since t̃N is the Stieltjes transform of a positive measure carried by R+, Imzt̃N > 0 for z ∈ C+ (see

(I.17)) and Im((1− z)zt̃N ) = Imz − Im
(1− cN )2

zt̃N
> Imz. We rewrite the denominator as

(1− z)zαN − (1− z)(1− cN ) + (1− z)zt̃N + 2(1− cN )− z = (1− z)
(
zαN − (1− cN )− (1− cN )2

(1− z)zt̃N

)
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ImzαN > 0 for z ∈ C+ because αN is the Stieltjes transform of a positive measure curried by R+. Thus

|(1− z)zαN − (1− z)(1− cN ) + (1− z)zt̃N + 2(1− cN )− z| ≥ |1− z|Im−(1− cN )2

(1− z)zt̃N
=

(1− cN )2Im((1− z)zt̃N )

|1− z||z|2|t̃N |2

As Im((1− z)zt̃N ) > Imz and |t̃N (z)| ≤ (Imz)−1 on C+, and that∣∣∣∣Oz ( 1

N2

)∣∣∣∣ ≤ 1

N2
P1(|z|)P2

(
1

Imz

)
on C+ (because 1

ρ(z) ≤
1

Imz on C+), we obtain that

|α̃N (z)− t̃N (z)| ≤ 1

N2
P1(|z|)P2

(
1

Imz

)
(A.38)

for each z ∈ C+. This completes the proof of Proposition III.3.

E. Proof of Lemma III.6

We first justify (III.68) and (III.69) when z ∈ C+. For this, we mention that (A.28) and (A.29) imply that the
fourth order moments of a∗N (Qii)N (z) bN − E(a∗N (Qii)N (z) bN ) and a∗N (Qij)N (z) bN − E(a∗N (Qij)N (z) bN )
are Oz2

(
1
N2

)
terms. Borel-Cantelli’s Lemma thus implies that a∗N (Qii)N (z) bN − E(a∗N (Qii)N (z) bN ) and

a∗N (Qij)N (z) bN−E(a∗N (Qij)N (z) bN ) converge almost surely towards 0 . (III.35) and (III.36) as well as Corollary
III.3 complete the proof of (III.68) and (III.69) on C+. In order to extend the convergence to C \ S∗, we
remark that Theorem III.1 implies that almost surely, for N large enough, a∗N (Qii)N (z) bN − t̃N (z)a∗NbN and
a∗N (Qij)N (z) bN − cNtN (z)a∗NbN are holomorphic on C \ S∗, and bounded on each compact subset of C \ S∗.
Therefore, Montel’s theorem implies that (III.35) and (III.36) holds for each z ∈ C \ S∗ and uniformly on the
compact subsets of C\S∗. The extension to the context of random vectors (aN , bN ) is justified using the arguments
used in the course of the proof of Lemma II.1.

F. Proof of the properties of function f∗ defined by (III.72)

(III.61) implies that c∗xt∗(x) = xt̃∗(x) + 1− c∗ for each x ∈ (4c∗(1− c∗), 1). As t̃∗ is the Stieltjes transform of
a positive measure supported by S∗, function x→ xt̃∗(x) is increasing on (4c∗(1− c∗), 1). As we also have

t̃∗(x)

t∗(x)
= c∗ −

1− c∗
xt∗(x)

. (A.39)

we obtain that x → t̃∗(x)
t∗(x) is increasing on (4c∗(1 − c∗), 1). Using (III.62), we check that xt∗(x) and

t̃∗(x)

t∗(x)
are

well defined at 4c∗(1− c∗) and that

(xt∗(x))
∣∣∣
x=4c∗(1−c∗)

=
4c∗(1− c∗)(2c∗ − 1)

2c∗(2c∗ − 1)2
=

2(1− c∗)
2c∗ − 1

⇒ t̃∗(x)

t∗(x)

∣∣∣
x=4c∗(1−c∗)

= c∗ −
2c∗ − 1

2
=

1

2

This shows that t̃∗(x)
t∗(x) is positive on [4c∗(1 − c∗), 1) and that x →

(
t̃∗(x)
t∗(x)

)2

, and thus x → f∗(x), are increasing
on [4c∗(1− c∗), 1). Moreover, it is easily checked that f∗(4c∗(1− c∗)) = c∗

1−c∗ . It remains to show that f∗ is well
defined at 1, and to evaluate f∗(1). For this, we remark that if c∗ < 1/2, then due to (III.49) and (III.62), we have

t̃∗(x)

t∗(x)

∣∣∣
x=1

= lim
y→1

c∗4(1− c∗)2(1− y)
(
x(2c∗ − 1)−

√
x(x− 4c∗(1− c∗))

)
x(1− x)4c∗(1− c∗)

(
x− 2(1− c∗)−

√
x(x− 4c∗(1− c∗))

) = 1− c∗

and for c∗ ≥ 1/2

t̃∗(x)

t∗(x)

∣∣∣
x=1

= lim
x→1

c∗

(
x− 2(1− c∗) +

√
x(x− 4c∗(1− c∗))

)
x(2c∗ − 1) +

√
x(x− 4c∗(1− c∗))

= c∗

This leads to f∗(1) = 1 if c∗ < 1
2 and f∗(1) =

(
c∗

1−c∗

)2

if c∗ ≥ 1/2.
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G. Proof of Lemma III.7

We express Ei as

Ei =

(
−∆2

i Ir
Ir 0

)
+

(
∆iΘ̃

∗
iΠ

W
i Θ̃i∆i ∆iΘ̃

∗
iW
∗
i (WiW

∗
i )−1Θi

Θ∗i (WiW
∗
i )−1WiΘ̃i∆i Θ∗i (WiW

∗
i )−1Θi

)
(A.40)

We remind that, as ηN = 1 almost surely for N large enough, it is possible to introduce ηN whenever it is useful
without modifying the almost sure behaviour of the various terms. Lemma III.4 implies thatE{ηW ∗i (WiW

∗
i )−1} =

E{η(WiW
∗
i )−1Wi} = 0 for i = p, f while (III.19)-(III.20) lead to E{ηΠW

i } = cNIr + O(N−k) and
E{η(WiW

∗
i )−1} = (1 − cN )−1(IL ⊗ R−1

N ) + O(N−k) for each k ∈ N. Combining these evaluations with the
Poincaré-Nash inequality, we obtain immediately (III.75).

H. Proof of Lemma III.8

We just provide a brief justification of the first item of Lemma III.8. For this, we notice that the 2r × 2r matrix
A∗iQW

ji Ai is given by

A∗iQW
ji Ai =

(
−∆iΘ̃

∗
iΠ

W,⊥
i

Θ∗i (WiW
∗
i )−1W ∗i

)
QW

ji

(
−ΠW,⊥

i Θ̃i∆i,W
∗
i (WiW

∗
i )−1Θi

)
(A.41)

We recall that, as ηN = 1 for each N large enough, we can add ηN everywhere in the 4 r × r blocks of
A∗iQW

ji Ai without modifying their almost sure behaviour. We first justify that the two r × r non diagonal blocks
of A∗iQW

ji Ai converge almost surely towards 0. For this, we first notice that, using the same arguments as in
Lemma III.4, it can be easily shown that E{ΠW

i QW
ji ηW

∗
i (WiW

∗
i )−1} = E{QW

ji ηW
∗
i (WiW

∗
i )−1} = 0. Using

the Poincaré-Nash inequality, it is possible to prove that Var{a∗NΠW,⊥
i QW

ij ηW
∗
i (WiW

∗
i )−1bN} = Oz2( 1

N )

and Var{
(
a∗NΠW,⊥

i QW
ij ηW

∗
i (WiW

∗
i )−1bN

)2

} = Oz2( 1
N2 ), where aN (resp. bN ) is a N dimensional (resp.

ML-dimensional) deterministic vector such that supN ‖aN‖ < +∞ (resp. supN ‖bN‖ < +∞). This immediately

implies that E
∣∣∣a∗NΠW,⊥

i QW
ij ηW

∗
i (WiW

∗
i )−1bN

∣∣∣4 = Oz2( 1
N2 ) and that a∗NΠW,⊥

i QW
ij ηW

∗
i (WiW

∗
i )−1bN , and thus

a∗NΠW,⊥
i QW

ij W
∗
i (WiW

∗
i )−1bN converge almost surely towards 0. The extension of these properties to the context

of bounded random vectors (aN , bN ) independent from the sequence (vn)n∈Z (see the proof of Lemma II.1) leads
to the conclusion that the two r×r non diagonal blocks of A∗iQW

ji Ai converge almost surely towards 0 as expected.

We now evaluate the almost sure behaviour of the two r × r diagonal blocks of A∗iQW
ji Ai, and consider the case

i = p, j = f without loss of generality. In the expression of (A∗pQW
fpAp)11 = ∆pΘ̃

∗
pΠ

W,⊥
p QW

fp ΠW⊥
p Θ̃p∆p, it is

possible to replace ΠW,⊥
p = I −ΠW

p by I − ηΠW
p . Using (III.10) and the resolvent identity

I + zQW = QW

(
0 ηΠW

p

ηΠW
f 0

)
=

(
0 ηΠW

p

ηΠW
f 0

)
QW (A.42)

we obtain easily that

(I − ηΠW
p )QW

fp (I − ηΠW
p ) = QW

fp − IN − zQW
pp − IN − zQW

ff + ηΠW
p + z2QW

pf

Using the Poincaré-Nash inequality, it is easy to check that if aN and bN are two deterministic N–dimensional
vectors for which supN ‖aN‖ < +∞ and supN ‖bN‖ < +∞, then, it holds that Var{a∗NηΠW

p bN} = O( 1
N ) and

Var{
(
a∗NηΠW

p bN − E(a∗NηΠW
p bN )

)2} = O( 1
N2 ). Therefore, E

(
a∗NηΠW

p bN − E(a∗NηΠW
p bN )

)4
= O( 1

N2 ), so that
a∗NηΠW

p bN − E(a∗NηΠW
p bN )→ 0 almost surely. (III.20) thus leads to the conclusion that

a∗NηΠW
p bN − cN a∗NbN → 0 a.s.

The use of Lemma III.6 implies that a∗NΠW,⊥
p QfpΠW,⊥

p bN−((1+z2)cNtN (z)−1−2zt̃N (z)−(1−cN ))a∗NbN → 0.
Moreover, this property also holds when (aN , bN ) are bounded random vectors (aN , bN ) independent from the
sequence (vn)n∈Z. We deduce from this that

(A∗pQW
fpAp)11 −

(
(1 + z2)cNtN (z)− 1− 2zt̃N (z)− (1− cN )

)
∆N → 0 a.s.
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holds. In order to obtain the expression stated in the Lemma, we refer to (III.63) and replace cNtN (z) by cNtN (z) =
t̃N (z)
z + 1−cN

z2 :

(1 + z2)cNtN (z)− 1− 2zt̃N (z)− (1− cN ) = t̃N (z)

(
1

z
− z
)

+
1− cN
z2

− 1 (A.43)

Let us remind that t̃N satisfies Eq. (III.41) but in which term Oz2(N−2) is replaced with 0, i.e.

(1− z2)̃t2
N (z) +

(
2(1− cN )

z
− z
)

t̃N (z) +
(1− cN )2

z2
= 0 (A.44)

In order to simplify (A.43) we rewrite Eq. (A.44) as

(zt̃N (z) + (1− cN ))

(
t̃N (z)

(
1

z
− z
)

+
1− cN
z2

− 1

)
+ (1− cN ) + z(1− cN )̃tN (z) = 0

and get immediately that the r.h.s. of (A.43) is equal to − (1−cN )(1+zt̃N (z))

zt̃N (z)+(1−cN )
. This establishes the expression stated

in the Lemma.

We finally evaluate the behaviour of (A∗pQW
fpAp)22 = Θ∗p(WpW

∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1Θp. We recall that

Wi = (I ⊗R1/2)Wi,iid for i = p, f , so that

Θ∗p(WpW
∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1Θp = Θ∗p(I⊗R−1/2)(Wp,iidW

∗
p,iid)

−1Wp,iidQ
W
iid,fpW

∗
p,iid(Wp,iidW

∗
p,iid)

−1(I⊗R−1/2)Θp

because QW
iid,fp = QW

fp . It is thus sufficient to study the behaviour of

a∗NηN (Wp,iidW
∗
p,iid)

−1Wp,iidQ
W
iid,fpW

∗
p,iid(Wp,iidW

∗
p,iid)

−1bN

where aN , bN are deterministic ML–dimensional vectors such that supN ‖aN‖ < +∞ and supN ‖bN‖ < +∞. We
also recall that the regularization term ηN is built from matrix Wiid. In order to simplify the notations, we prefer
to denote Wi,iid by Wi in the following. After some calculations, the Poincaré-Nash inequality leads to

a∗NηN (WpW
∗
p )−1WpQ

W
fp ηW

∗
p (WpW

∗
p )−1bN − E

(
a∗NηN (WpW

∗
p )−1WpQ

W
fp ηW

∗
p (WpW

∗
p )−1bN

)
→ 0 a.s.

It is thus sufficient to evaluate E{(ηWpW
∗
p )−1WpQ

W
fp ηW

∗
p (WpW

∗
p )−1} using the integration by parts formula.

By Lemma III.4, this matrix is diagonal, and we therefore consider its diagonal elements. For this, we need to
repeat the calculations of Section III-A2. In order to avoid to reproduce another tedious and similar calculations,
we provide only the ideas and main steps. It is first necessary to apply the integration by parts formula for∑
r,t,m2,i2

E{ηQW
fp rt

W̄m1
p,i1t

((WpW
∗
p )−1)m1m2

i1i2
Wm2
p,i2r
} and follow the calculations of Section III-A2 using similar

arguments. We first obtain

E{
(
η(WpW

∗
p )−1WpQ

W
fpW

∗
p

)m1m1

i1i1
} = E{η((WpW

∗
p )−1)m1m1

i1i1
} 1

N

(
E{TrQW

fp } − E{TrQW
fp ηΠW

p }
)

− E
{
η
(
(WpW

∗
p )−1WpQ

W
fp ηW

∗
p (WpW

∗
p )−1

)m1m1

i1i1

} 1

N
E{TrηΠW,⊥

p QW
fp }+ONz2(N−3/2)

Since E{η(WpW
∗
p )−1} = (1− cN )−1IN +ON (N−3/2) and that the equality QW

fp ηΠW
p = IN + zQW

ff holds (see
(A.42)), we can simplify the r.h.s. of the last equation:

E{η
(
(WpW

∗
p )−1WpQ

W
fpW

∗
p

)m1m1

i1i1
} =

1

1− cN
(αN − 1− zα̃N )

− E
{
η
(
(WpW

∗
p )−1WpQ

W
fp ηW

∗
p (WpW

∗
p )−1

)m1m1

i1i1

}
(αN − 1− zα̃N ) +Oz2(N−3/2) (A.45)

We express E{η
(
(WpW

∗
p )−1WpQ

W
ff W ∗p

)m1m1

i1i1
} similarly:

E{η
(
(WpW

∗
p )−1WpQ

W
ff W ∗p

)m1m1

i1i1
} = E{η((WpW

∗
p )−1)m1m1

i1i1
} 1

N

(
E{TrQW

ff } − E{TrQW
ff ηΠW

p }
)

− E
{
η
(
(WpW

∗
p )−1WpQ

W
ff ηW ∗p (WpW

∗
p )−1

)m1m1

i1i1

} 1

N
E{TrηΠW,⊥

p QW
ff }+Oz2(N−3/2)
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We remark that N−1E{TrQW
ff ηΠW,⊥

p } = −z−1E{N−1ηTrΠW,⊥
p } = − 1−cN

z + Oz2(Nk) for each integer k (see
(III.30)). The last equation can thus be rewritten as

E{η
(
(WpW

∗
p )−1WpQ

W
ff W ∗p

)m1m1

i1i1
} = −1

z

+
1− cN
z

E
{
η
(
(WpW

∗
p )−1WpQ

W
fp ηW

∗
p (WpW

∗
p )−1

)m1m1

i1i1

}
+Oz2(N−3/2) (A.46)

Moreover, using the resolvent identity, (WpW
∗
p )−1WpQ

W
ff W ∗p can be rewritten as (WpW

∗
p )−1Wp(−z−1IN +

z−1(ΠW
f ΠW

p − z2)−1ΠW
f ΠW

p )W ∗p = −z−1IN + z−1(WpW
∗
p )−1WpQ

W
fp ηΠW

p W
∗
p . Using the obvious identity

ΠW
p W

∗
p = W ∗p and comparing (A.45) and (A.46) we that:

E{
(
η(WpW

∗
p )−1WpQ

W
fp ηW

∗
p (WpW

∗
p )−1

)m1m1

i1i1
} =

αN − 1− zα̃N
(1− cN )((1− cN ) +αN − 1− zα̃N )

+ Oz2(N−3/2)

As we can see, all diagonal elements of E{η(WpW
∗
p )−1WpQ

W
fp ηW

∗
p (WpW

∗
p )−1} are equal up to an error term.

Therefore, the matrix E{η(WpW
∗
p )−1WpQ

W
fp ηW

∗
p (WpW

∗
p )−1} is a multiple of IN up to an error term. We thus

conclude that

a∗N (WpW
∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1bN −

cNtN − 1− zt̃N
(1− cN )((1− cN ) + cNtN − 1− zt̃N )

a∗NbN → 0. (A.47)

After replacing cNtN with t̃N (z)
z + 1−cN

z2 we find that cNtN − 1− zt̃N = t̃N (z)( 1
z − z) + 1−cN

z2 − 1 which is also
the expression obtained in (A.43). We remind that

t̃N (z)

(
1

z
− z
)

+
1− cN
z2

− 1 = − (1− cN )(1 + zt̃N (z))

zt̃N (z) + (1− cN )

Plugging this expression into (A.47), and remarking that (A.47) still holds when (aN , bN ) are random bounded
vectors independent from (vn)n≥1, we obtain the asymptotic behaviour (A∗pQW

fpAp)22 stated in the Lemma.
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