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Résumé – Dans cet article, nous nous intéressons au comportement des valeurs singulières de l’estimateur empirique de l’autocovariance
entre le passé et le futur d’une série temporelle gaussienne multivariable décorrélée temporellement. Nous nous intéressons au régime des
grandes dimensions dans lequel la dimension de l’observation est du même ordre de grandeur que la taille de l’échantillon disponible. Alors
que dans le régime traditionnel, la matrice d’autocovariance empirique tend vers 0, nous montrons dans notre cadre que les valeurs singulières
au carré tendent se répartir selon une distribution déterministe caractérisée par sa transformée de Stieltjes. Nous identifions le support de cette
distribution, et montrons que les valeurs singuliès au carré sont situées presque surement au voisinage du support. Ce travail est une première
étape permettant d’analyser le comportement d’algorithmes classiques d’estimation de modèles d’état.

Abstract – In this paper, we study the behaviour of the singular values of the empirical estimate of the autocovariance matrix between the
future and the past of an uncorrelated multivariate Gaussian time series. We consider the high-dimensional regime in which the dimension of
the observation and the sample size both converge towards ∞ at the same rate. While in the traditional regime the estimated autocovariance
matrix converges towards 0, we establish in this paper that the empirical distribution of the singular values to the square has a limit deterministic
behaviour that is characterized through its Stieltjes transform. We identify the support of this limit distribution, and show that the singular values
to the square are located in a neighbourhood of this support. This work is a first step towards an analysis of classical state space estimation
algorithms in the high-dimensional regime.

1 Introduction
It is well known that a M–dimensional time series (un)n∈Z
with rational spectrum admits causal state space representa-
tions. In the mutivariate case, these representations are rec-
ognized to be more convienient that the vector-valued ARMA
ones because they are more parsimonious. In particular, while
the minimal order of an ARMA representation cannot be clearly
evaluated, the minimal dimension P of the states that represent
u coincides with the rank of the autocovariance matrix R(L)

f |p
between the augmented vectors uLn+L = (uTn+L, u

T
n+L+1, . . . ,

uTn+2L−1)T (the future) and uLn = (uTn , u
T
n+1, . . . , u

T
n+L−1)T

(the past) where L should be chosen greater than P (see e.g.
the monograph [7]). Moreover, the left factor of any minimal
rank factorization of R(L)

f |p coincides with the observability ma-
trix of a pair (C,A) of a minimal state space representation of
u, from which it is easy to retrieve matrices C and A. When
a noisy version yn = un + vn is observed, and that the noise
(vn)n∈Z is temporally uncorrelated, the autocovariance matrix
between the future and the past of (yn)n∈Z remains equal to
R

(L)
f |p . A crucial problem is to estimate C and A from N con-

secutive samples y1, y2, . . . , yN . For this, a standard approach,
known as the principal component algorithm (see e.g. [1] and
[7]), consists first in estimating empirically R(L)

f |p from the N
observations. If the number of samples N is much larger than
the dimension ML of the augmented vectors, the empirical es-
timate R̂(L)

f |p is close to R(L)
f |p , and is nearly a rank P matrix.

This allows one to evalute P as well as C and A from the trun-
cated singular decomposition of R̂(L)

f |p . The approach provides
reasonable performance when the ratio ML

N is small enough.
When the dimension M of the observation is large, this con-
dition needs the number of sample N to be very large. In a
number of contexts, the number of samples is however not un-
limited, and the ratio ML

N may not be small enough. It is thus
important to be able to analyse the behaviour of the above men-
tionned estimation procedure when ML and N are of the same
order of magnitude. In order to simplify the problem, we as-
sume in this paper that parameter L cannot be too large, and
consider the high-dimensional regime where M and N both
converge towards +∞ in such a way that M/N converges to-
wards a constant, while parameter L remains fixed. Therefore,
in our analysis, parameter M depends on N , and we denote by



cN the ratio cN = ML
N .

The relevance of the principal component algorithm lies on
the observation that, in the classical asymptotic regime where
N → +∞ while M and L remain fixed, ML ×ML matrix
R̂

(L)
f |p is close to a rank P matrix for each L ≥ P . In this

paper, we focus on the study of the behaviour of the singu-
lar values of this matrix, or equivalently of the eigenvalues of
R̂

(L)
f |p(R̂

(L)
f |p)∗, in the above mentioned high-dimension regime.

Due to the lack of space, we only address the case where sig-
nal u is absent. Equivalently, we assume from now on that
for each n = 1, . . . , N , yn coincides with vn. In the stan-
dard asymptotic regime, matrix R̂(L)

f |p converges towards 0 in
the spectral norm sense, but, as shown below, this is no longer
the case in our high-dimensional regime where the eigenvalues
of R̂(L)

f |p(R̂
(L)
f |p)∗ are localized in a non vanishing interval de-

pending on cN and on the eigenvalues of the covariance matrix
R = E(yny

∗
n). When the signal u is present, it is possible, un-

der some assumptions on u, to use a perturbation approach tak-
ing benefit of the results presented here, and to find conditions
under which the presence of u produces in matrix R̂(L)

f |p(R̂
(L)
f |p)∗

some eigenvalues that are larger than when the observation is
reduced to the noise. This approach is rather standard in the
large random matrix theory literature (see e.g. [2], [4]). The
corresponding results will be reported elsewhere.

We finally mention the very few papers that addressed re-
cently the problem considered in this paper. [5] considers the
case where the covariance matrix R is reduced to I and where
L = 1, a quite specific case. However, y is possibly non
Gaussian in [5], so that the method of [5] is completely differ-
ent from the approach developed in the present paper. More-
over, in [5] the analysis of the limit eigenvalue distribution of
R̂

(L)
f |p(R̂

(L)
f |p)∗ is less complete than in the present paper. We also

notice that [6] took benefit of the results of [5] to consider the
presence of a very particular useful signal u. We also mention
[3] which derived some of the results of [5] using the moment
method.
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and by the ANR Project HIDITSA, reference ANR-17-CE40-
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2 Assumptions and notations.
In this section, we will make precise the assumptions and intro-
duce some notations. In the following, we assume that (yn)n∈Z
is a zero meanM–dimensional complex Gaussian uncorrelated
time series with covariance matrix R, i.e. E(yn+ky

∗
n) = Rδk,

where R is a M ×M positive definite matrix. As M depends
on N , matrix R is thus not a fixed matrix, but has to be inter-
preted as a sequence of matrices (RN )N≥1. The eigenvalues
of matrix RN , arranged in the decreasing order, are denoted
(λk,N )k=1,...,M . In the following, it is assumed that there exist
2 positive constants a and b such that 0 < aI ≤ RN ≤ bI for
each N . In other words, infN λM,N > 0 and supN λ1,N <

+∞. Finally, cN = ML
N converges towards a non zero con-

stant c∗. In order to simplify the presentation, we assume that
cN ≤ 1 for each N , which implies that c∗ ≤ 1. We introduce
the block-Hankel “past” and “future”matrices Yp,N and Yf,N
defined by

Y (L)
p =


y1 y2 . . . yN−1 yN
y2 y3 . . . yN yN+1

...
...

...
...

...
...

...
...

...
...

yL yL+1 . . . yN+L−2 yN+L−1

 (1)

and

Y
(L)
f =


yL+1 yL+2 . . . yN−1+L yN+L

yL+2 yL+3 . . . yN+L yN+L+1

...
...

...
...

...
...

...
...

...
...

y2L y2L+1 . . . yN+2L−2 yN+2L−1


(2)

We notice that both matrices depend on samples yN+1, . . . , yN+2L−1
that are not supposed to be available. In order to simplify, we
do not take into account the corresponding end effects. We
also consider the normalized past and future matrices Σp,N =
1√
N
Yp,N and Σf,N = 1√

N
Yf,N . Matrix Σf,NΣ∗p,N is the

standard empirical estimate R̂(L)
f |p of the autocovariance ma-

trixR(L)
f |p between vectors yLn+L = (yTn+L, . . . , y

T
n+2L−1)T and

yLn = (yTn , . . . , y
T
n+L−1)T , which, in the present context is

R
(L)
f |p = 0. We denote by C+ the set of all complex num-

bers such that Im(z) > 0. Finally, if α is a positive measure
whose support is S, its Stieltjes transform sα(z) is the function
holomorphic on C− S defined by sα(z) =

∫
S
dα(λ)
λ−z .

3 The main results.

We denote by (λ̂k,N )k=1,...,M the eigenvalues of Σf,NΣ∗p,NΣp,NΣ∗f,N
arranged in the decreasing order. The empirical eigenvalue
distribution of Σf,NΣ∗p,NΣp,NΣ∗f,N is the probability measure
ν̂N = 1

M

∑M
k=1 δλ̂k,N

. As in a number of large random ma-
trix models, measure ν̂N has a deterministic behaviour, i.e.
there exists a sequence of deterministic probability measures
(νN )N≥1 carried by R+ such that ν̂N−νN → 0 weakly almost
surely, a condition which is equivalent to the almost sure con-
vergence of 1

M

∑M
k=1 ψ(λ̂k,N )−

∫
ψ(λ)dνN (λ) towards 0 for

each bounded continuous function ψ. Intuitively, this means
that if N is large enough, then the histograms of the eigen-
values of various realizations of Σf,NΣ∗p,NΣp,NΣ∗f,N tend to
accumulate around the graph of the probability density of νN .
Measure νN is characterized by its Stieltjes transform, denoted
sN (z). The following theorem holds.



Theorem 1 For each z ∈ C+, the equation

tN (z) =
1

M
TrRN

(
−z
(
IM +

cN t(z)

1− z(cN tN (z))2
RN

))−1
(3)

has a unique solution that belongs to C+. Moreover, function
z → tN (z) is the Stieltjes transform of a measure µN car-
ried by R+. The M × M matrix-valued function TN (z) =(
−z
(
IM + cN t(z)

1−z(cN tN (z))2RN

))−1
is the Stieltjes transform

of a positive matrix-valued measure νTN such that νTN (R+) =
IM , and sN (z) = 1

MTr(TN (z)) coincides with the Stieltjes
transform of the probability distribution νN = 1

MTr(νTN ). Mo-
roever, ν̂N − νN → 0 weakly almost surely when N → +∞.
Finally, if we denote SN the support of measure νN , the follow-
ing holds: Assume that there exists a positive quantity ε > 0,
two real values e, f ∈ R and an integer N0 such that

(e− ε, f + ε) ∩ SN = ∅ ∀N ∈ N, N ≥ N0. (4)

Then, almost surely, no eigenvalue of Σf,NΣ∗p,NΣp,NΣ∗f,N ap-
pears in [e, f ] for all N large enough.

It is interesting to notice that tN (z), and therefore sN (z), µN
and νN do not depend on parameter L. Moreover, Theorem 1
shows that in order to understand the behaviour of the eigen-
values of Σf,NΣ∗p,NΣp,NΣ∗f,N when N → +∞, it is of great
interest to study measure νN . In particular, the last statement of
Theorem 1 implies that the characterization of SN allows one
to infer useful informations on the localization of the eigenval-
ues.
SN can indeed be characterized. For this, we first mention

that measures νN and µN are absolutely continuous one with
respect to the other. Therefore, SN coincides with the sup-
port of µN . We first state the following preliminary result that
shows that µN (and thus νN ) is absolutely continuous w.r.t. the
Lebesgue measure.

Proposition 1 For each x ∈ R∗, limz→x,z∈C+ tN (z) = tN (x)
exists and is finite. Moreover, µN and νN are absolutely con-
tinuous w.r.t. the Lebesgue measure, and their densities coin-
cide with functions fN (x) and gN (x) defined for each x 6= 0

by fN (x) = 1
π Im(tN (x)) and gN (x) = − 1

π
cN Im((tN (x))2)
|1−x(cN tN (x))2|2

respectively. 0 belongs to SN , and limx→0 fN (x) =
limx→0 gN (x) = +∞. Finally, if cN < 1, it holds that

gN (x) 'x→0
1

π

1√
cN (1− cN )

1

M
Tr(R−1N )

1√
x

(5)

while if cN = 1,

gN (x) 'x→0
1

π

√
3

2

(
1

M
Tr(R−1N )

)2/3
1

x2/3
(6)

This result shows that 0 is a singular point of the densities of
µN and νN . This, in practice, means that a number of eigen-
values of matrix Σf,NΣ∗p,NΣp,NΣ∗f,N are close from 0. More-
over, the rate of convergence of gN towards +∞ is higher if
cN = 1, showing that in this case, the proportion of eigen-
values close to 0 is even larger than if cN < 1. While we do

not address the case cN > 1 in this paper, we notice that if
cN > 1, then measures µN and νN both contain a Dirac mass
with weight 1− 1

cN
. Moreover, the densities fN (x) and gN (x)

are zero in a neighborhood of 0. Fig. 1 illustrates Theorem 1
and Proposition 1. Here, M = 500, N = 1500 and L = 2 so
that cN = 2/3. The eigenvalues of matrix RN are defined by
λk,N = 1/2 + π

4 cos
(
π(k−1)
2M

)
for k = 1, . . . ,M . Matrix RN

verifies 1
MTr(RN ) ' 1. The histogram of the eigenvalues of

a realization of Σf,NΣ∗p,NΣp,NΣ∗f,N is represented as well as
the graph of the density gN (x).

Figure 1: Histogram of the eigenvalues and graph of gN (x) for
M = 500, N = 1500, L = 2

In order to characterize SN more explicitely, we introduce
function wN (z) defined by wN (z) = zcN tN (z) − 1

cN tN (z) ,
and remark that (3) leads immediately to φN (wN (z)) = z for
each z where φN (w) is the function defined

φ(w) = cw2 1

M
TrR(R− wI)−1(c

1

M
TrR(R− wI)−1 − 1)

Moreover, it can be checked that the interior S◦N of SN co-
incides with S◦N = {x ∈ R+∗, Im(wN (x)) > 0}. There-
fore, if x ∈ R+ − SN , wN (x) is real, and thus coincides
with one of the real solutions of the equation φN (w) = x.
It is in fact possible to establish that if x ∈ R+ − SN , then,
the equation φN (w) = x admit a unique real solution veri-
fying φ

′

N (w) > 0 and 1
MTr(R(R − wI)−1) < 0 and that

this real solution is precisely wN (x). Therefore, R+ − SN
coincides with the image by function φN of the intervals on
which φ

′

N (w) > 0 and 1
MTr(R(R−wI)−1) < 0. It is easy to

check that function w → φN (w) converges towards +∞ when
w → λ1,N , w > λ1,N , decreases until the point w+,N defined
as the unique solution of equation φ

′

N (w) = 0 on the interval
]λ1,N ,+∞[, and then increases on ]w+,N ,+∞[. It is clear that
1
MTr(R(R − wI)−1) < 0 if w ≥ w+,N . Therefore, if we de-
note by x+,N the point x+,N = φN (w+,N ), then, the image by
φN of ]w+,N ,+∞[, i.e. the interval ]x+,N ,+∞[, is included
into R+−SN . Depending on the existence of local extrema of
φN located in [0, x+,N ], satisfying 1

MTr(R(R − wI)−1) < 0,



the support may be equal to the whole interval [0, x+,N ], or to
a finite union of intervals included into [0, x+,N ]. In this last
case, the 2 extreme intervals contain 0 and x+,N respectively.
In fig. 2 and 3, we represent function φN when the number
of distinct eigenvalues M of RN is equal to 3, and denote
(λi)i=1,...,M the corresponding eigenvalues. The (ωi)i=1,2,3

are the solutions of c 1
MTrR(R − wI)−1 − 1 = 0, and µ1, µ2

are the 2 solutions of the equation 1
MTrR(R − wI)−1 = 0.

The intervals on which 1
MTr(R(R − wI)−1) < 0 are thus

]λ1, µ1[, ]λ2, µ2[ and ]λ3,+∞[. In Fig. 2, φN is decreasing on
]λ1, µ1[ and on ]λ2, µ2[, so that SN = [0, x+]. In Fig. 3, φN
is this time increasing on an interval ]x1,−, x1,+[ included into
]λ1, µ1[. Therefore, SN coincides with [0, x1,−] ∪ [x1,+, x+].

.

µ1

ω1

ω2 ω3µ2

λ1λ3 λ2

x+

.

Figure 2: Typical representation of φ (w) as a function of w
for M = 3. There is no local maximum on [λ1, µ1] and on
[λ2, µ2], so that S = [0, x+].

.

λ2

µ1

ω1

ω2 ω3µ2

x+

x1,+

x1,−

λ1λ3

.

Figure 3: Typical representation of φ (w) as a function of w
for M = 3. There are 2 local extrema on [λ1, µ1] and no local
extremum on [λ2, µ2], so that S = [0, x1,−] ∪ [x1,+, x+].

Intuitively, if the eigenvalues of RN are close enough one to
each other, it can be reasonnably expected that φN will not
admit local maxima in ]λM,N , λ1,N [ such that 1

MTrR(R −
w(z)I)−1 < 0. Therefore, in such a context, the support is
likely to be reduced to the single interval [0, x+,N ]. This intu-
ition is confirmed by the following result.

Proposition 2 Assume that there exist C > 0 and ε > 0 such
that for each sufficiently large N , the following condition

|λk,N − λl,N | ≤ C
(
|k − l|
M

)(1+ε)/2

(7)

holds for each pair (k, l), 1 ≤ k ≤ l ≤ M . Then, for each M
large enough, S = [0, x+,N ].

This result appears quite useful to address the case where a sig-
nal u is present. More details will be provided in a forthcoming
paper.

4 Conclusion
In this paper, we have studied the behaviour of the eigenval-
ues of matrix R̂(L)

f |pR̂
∗(L)
f |p where R̂(L)

f |p represents the usual em-
pirical estimate of the autocovariance matrix between the fu-
ture and the past of an uncorrelated complex Gaussian time
series. In the usual high-dimensional regime, we have estab-
lished that the empirical eigenvalue distribution of R̂(L)

f |pR̂
∗(L)
f |p

behaves as a deterministic probability measure νN that is char-
acterized by its Stieltjes transform. The support SN of νN has
been chacterized, and we have proved that almost surely, for
N large enough, all the eigenvalues of R̂(L)

f |pR̂
∗(L)
f |p are located

in a neighbourhood of SN . We have finally given a condition
on the covariance matrix of the observation under which SN is
reduced to a single interval.
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