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Introduction

Focus on the phase retrieval problem, i.e.

find x
such that |〈ai, x〉|2 = b2i , i = 1, . . . , n

in the variable x ∈ Cp.

� Reconstruct a signal x from the amplitude of n linear measurements.

� We seek a tractable procedure, i.e. a polynomial time algorithm with explicit
approximation and complexity bounds.
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Introduction

Applications in e.g. molecular imaging

Origin: X-ray crystallography

Knowledge of phase crucial to build electron density map

Initial success in certain cases by using very specific prior knowledge: Nobel
Prize for Hauptman and Karle (1985)

Still important today: e.g. macromolecular crystallography for drug design

(from [Candes et al., 2011b])

� CCD sensors only record the magnitude of diffracted rays, and loose the phase

� Fraunhofer diffraction: phase is required to invert the 2D Fourier transform
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Introduction

Problem is almost 100 years old, infinite list of references. . .

Algorithms

� Greedy algorithm [Gerchberg and Saxton, 1972]

� Classical survey of algorithms by [Fienup, 1982].

� NP-complete [Sahinoglou and Cabrera, 1991].

� Matrix completion formulation [Chai, Moscoso, and Papanicolaou, 2011] and
[Candes, Strohmer, and Voroninski, 2011a]

Applications

� X-ray and crystallography imaging [Harrison, 1993], diffraction imaging [Bunk
et al., 2007] or microscopy [Miao et al., 2008].

� Audio signal processing [Griffin and Lim, 1984].
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Introduction

Classical greedy algorithm [Gerchberg and Saxton, 1972].

Input: An initial y1 ∈ Cn, i.e. such that |y1| = b.
1: for k = 1, . . . , N − 1 do
2: Set

w = AA†yk

3: Set
yk+1
i = bi

w

|w|
, i = 1, . . . , n.

4: end for
Output: yN ∈ Cn.

Very similar to alternating projections:

� Project on R(A).

� Adjust the magnitude to match b

� Repeat. . .
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Introduction

� [Chai et al., 2011] and [Candes et al., 2011a] use a lifting procedure from
[Shor, 1987, Lovász and Schrijver, 1991] to write

|〈ai, x〉|2 = b2i ⇐⇒ Tr(aia
∗
ixx
∗) = b2i

and formulate phase recovery as a matrix completion problem

Minimize Rank(X)
such that Tr(aia

∗
iX) = b2i , i = 1, . . . , n

X � 0

in the matrix X ∈ Hp.

� [Recht et al., 2007, Candes and Recht, 2008, Candes and Tao, 2010] show that
under certain conditions on A and x0, it suffices to solve

Minimize Tr(X)
such that Tr(aia

∗
iX) = b2i , i = 1, . . . , n

X � 0

which is a (convex) semidefinite program in X ∈ Hp.
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MAXCUT formulation

We can decouple the phase and magnitude reconstruction problems.

� In the noiseless case, write Ax = diag(b)u where u ∈ Cn is a phase vector
with |ui| = 1.

� The phase recovery problem can be written

min
u∈Cn, |ui|=1,

x∈Cp

‖Ax− diag(b)u‖22,

� The inner minimization problem in x is a standard least squares, with solution
x = A†diag(b)u, so phase recovery becomes

minimize u∗Mu
subject to |ui| = 1, i = 1, . . . n,

in u ∈ Cn, where the Hermitian matrix M = diag(b)(I−AA†)diag(b) is
positive semidefinite.
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MAXCUT formulation

MAXCUT. Classical algorithm in combinatorial optimization.

� Given an undirected graph with weights wij on its edges (i, j), MaxCut seeks to
partition the vertices in two sets S and S̄ to maximize the weight of the cut

max
S⊂[1,n]

∑
{i∈S, j∈S̄}

wij

� This can be written as a quadratic program

maximize xTLx
subject to x2

i = 1, i = 1, . . . , n

where L is the graph Laplacian, L = diag(We)−W .

� Other interpretations as computing the ground state of spin glass models
[Mezard and Montanari, 2009], computing mixed matrix norms [Nemirovski,
2005], approximating the CUT-norm [Alon and Naor, 2004], etc...
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MAXCUT formulation

MAXCUT. We know a lot about how to find an approximate solution

maximize xTLx
subject to x2

i = 1, i = 1, . . . , n

� [Goemans and Williamson, 1995] produce a polynomial algorithm with an
approximation ratio of 0.878..., using a semidefinite relaxation

maximize Tr(XL)
subject to diag(X) = 1, X � 0

combined with a randomization argument.

� Approximating the solution with an approximation ratio better than 16/17 is
NP-Hard, etc.
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MAXCUT formulation

The phase recovery problem was written (in phase) as

minimize u∗Mu
subject to |ui| = 1, i = 1, . . . n,

� We can write a relaxation for phase recovery similar to the MAXCUT SDP, and
recycle all the efficient algorithms designed for MAXCUT to solve it.

� Nesterov [1998] produces approximation bounds for generic nonconvex
quadratic programs. [Goemans and Williamson, 2001, Zhang and Huang,
2006] extend these results to complex valued problems and show a π/4
approximation ratio for

maximize u∗Mu
subject to |ui| = 1, i = 1, . . . n,

when M � 0.

� Tightness results on very similar maximum-likelihood channel detection
problems [Luo et al., 2003, Kisialiou and Luo, 2010, So, 2010].
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Outline

Tightness. [Waldspurger, d’Aspremont, and Mallat, 2012] Write a semidefinite
relaxation for phase recovery, similar to the MAXCUT SDP

Minimize Tr(MU)
such that diag(U) = 1, X � 0

call it PhaseCut. When do we perfectly recover the signal x?

� [Candes et al., 2011a] show exact recovery w.h.p. for the PhaseLift relaxation

Minimize Tr(X)
such that Tr(aia

∗
iX) = b2i , i = 1, . . . , n

X � 0

when n = O(p log p) observations ai are picked uniformly on the unit sphere.

� [Waldspurger et al., 2012] show

PhaseCut is tight whenever PhaseLift is.

� Empirically, slightly more robust to noise.

A. d’Aspremont GdR ISIS, May 2013. 13/33



Outline

� Introduction

� MAXCUT formulation

� Tightness

� Algorithms & Structure

� Numerical Results

A. d’Aspremont GdR ISIS, May 2013. 14/33



Sparsity: known support in 2D

� Molecular imaging: the samples are approximately sparse with known support.

� Most of the coefficient in b are close to zero.

Electronic density for the caffeine molecule (left), its 2D FFT transform
(diffraction pattern, center), the density reconstructed using 3% of the
coefficients at the core of the FFT (right).
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Positivity

� We observe the magnitude of the Fourier transform of a discrete nonnegative
signal x ∈ Rp so that

|Fx| = b

� We seek to reconstruct positive signals x ≥ 0.

� This introduces additional convex restrictions on the phase vector u.

A function f : Rs 7→ C is positive semidefinite if and only if the matrix B with
Bij = f(xi − xj) is Hermitian positive semidefinite for any sequence xi ∈ Rs.

Theorem

Bochner. A function f : Rs 7→ C is positive semidefinite if and only if it is the
Fourier transform of a (finite) nonnegative Borel measure.
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Positivity

� Reconstruct a phase vector u ∈ Cn such that |u| = 1 and

Fx = diag(b)u.

In 1D (for simplicity), if we define the Toeplitz matrix

Bij(y) = y|i−j|+1, i, j = 1, . . . , p,

so that

B(y) =


y1 y∗2 · · · y∗n
y2 y1 y∗2 · · ·

y2 y1 y∗2
...

... . . . . . . . . .
. . . y2 y1 y∗2

yn . . . y2 y1


� When Fx = diag(b)u, Bochner’s theorem means B(diag(b)u) � 0 iff x ≥ 0.

� The contraint B(diag(b)u) � 0 is a linear matrix inequality in u, hence is
convex.
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Algorithms

PhaseCut is a complex semidefinite program, written

Minimize Tr(MU)
such that diag(U) = 1, X � 0

where U ∈ Hn with n = Jp, where p is the size of the signal.

� The complexity of solving this SDP using the algorith in Helmberg et al. [1996]
is

O

(
J3.5 p3.5 log

1

ε

)
and O

(
K J2p4.5 log

1

ε

)
for PhaseCut and PhaseLift respectively.

� Solving a generic linear system is O(p3), solving a LP is O(p3.5). . .

� Using first-order solvers such as TFOCS [Becker et al., 2012], based on
[Nesterov, 1983], the dependence on the dimension can be further reduced, to
become

O

(
J3 p3

ε

)
and O

(
KJ p3

ε

)
for solving PhaseCut and PhaseLift respectively, serious impact on precision.
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Algorithms

Block Coordinate Method. [Wen et al., 2009]

Input: An initial X0 = In and ν > 0 (typically small). An integer N > 1.
1: for k = 1, . . . , N do
2: Pick i ∈ [1, n].
3: Compute

x = Xk
ic,icMic,i and γ = x∗Mic,i

4: If γ > 0, set

Xk+1
ic,i = Xk+1∗

i,ic = −
√

1− v
γ

x

else
Xk+1
ic,i = Xk+1∗

i,ic = 0.

5: end for
Output: A matrix X � 0 with diag(X) = 1.

Writing ic the index set {1, . . . , i− 1, i+ 1, . . . , n}.
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Algorithms

Complexity.

� Each iteration only requires matrix vector products O(n2).

� Cost per iteration very similar to the greedy algorithm by [Gerchberg and
Saxton, 1972].

� In signal applications, the matrix vector product can be computed efficiently
using the FFT, and the cost per iteration is reduced to O(n log n).
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Numerical Experiments: 1D

� Three random signal classes: (a) Gaussian white noise. (b) Sum of 6 sinuoids
of random frequency & random amplitudes. (c) Random scan-line of an image.
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� The linear sampling operator A is an oversampled Fourier transform,
multiple filterings with random filters, or a wavelet transform.

� We measure the error both in signal and in modulus

ε(x, x̃) = min
c∈C,|c|=1

‖x− c x̃‖
‖x‖

and ε(|Ax|, |Ax̃|) =
‖|Ax| − |Ax̃|‖
‖Ax‖

.
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Numerical Experiments: 1D

Fourier Random Filters Wavelets

Gerchberg-Saxton 5% 49% 0%

PhaseLift with reweighting 3% 100% 62%

PhaseCut 4% 100% 100%

Percentage of perfect reconstruction from |Ax|, over 300 test signals, for the three different

operators A (columns) and the three algorithms (rows).

Fourier Random Filters Wavelets

Gerchberg-Saxton 0.9 1.2 1.3

PhaseLift with reweighting 0.8 exact 0.5

PhaseCut 0.8 exact exact

Average relative signal reconstruction error ε(x̃, x) over all test signals that are not perfectly

reconstructed, for each operator A and each algorithm.

Fourier Random Filters Wavelets

Gerchberg-Saxton 9.10−4 0.2 0.3

PhaseLift with reweighting 5.10−4 exact 8.10−2

PhaseCut 6.10−4 exact exact

Average relative error ε(|Ax̃|, |Ax|) of coefficient amplitudes, over all test signals that are not

perfectly reconstructed, for each operator A and each algorithm.
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Numerical Experiments: 1D

Mean performances of PhaseLift and PhaseCut, followed by some greedy
iterations, for 4 gaussian random illumination filters. The x-axis represents the
relative noise level, ||bnoise||2/||Ax||2 and the y-axis the relative error on the result
(signal and modulus).
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Numerical Experiments: 1D

[Demanet and Hand, 2012] show that the solution to the relaxation is unique
(trace minimization is unnecessary).
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PhaseLift performance, for 64-sized signals, as a function of the number of
measurements.
(a) Proportion of reconstructed signals, postprocessing using after GS iterations.
(b) Proportion of rank 1 (tight) solutions in the relaxation.
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Numerical Experiments: 2D

Applications in e.g. molecular imaging

Origin: X-ray crystallography

Knowledge of phase crucial to build electron density map

Initial success in certain cases by using very specific prior knowledge: Nobel
Prize for Hauptman and Karle (1985)

Still important today: e.g. macromolecular crystallography for drug design

(from [Candes et al., 2011b])

� CCD sensors only record the magnitude of diffracted rays, and loose the phase

� Fraunhofer diffraction: phase is required to invert the 2D Fourier transform

� Simulate diffraction using molecules from PDB and Poisson noise.
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Numerical Experiments: 2D
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4 ill., α = 10
−2

Solution of the greedy algorithm on caffeine molecule, for various values of the
number of filters and noise level α.
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Numerical Experiments: 2D
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Solution of the semidefinite relaxation algorithm followed by greedy refinements,
for various values of the number of filters and noise level α.

A. d’Aspremont GdR ISIS, May 2013. 28/33



Numerical Experiments: 2D
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MSE between reconstructed image and true image for 2 illuminations without
noise, using SDP then Fienup (blue), and Fineup only (red).
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Numerical Experiments: 2D
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Solution of the greedy algorithm on 2LYZ (Lysozyne), for various values of the
number of filters and noise level α.
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Numerical Experiments: 2D
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Solution of the semidefinite relaxation algorithm followed by greedy refinements
on 2LYZ (Lysozyne), for various values of the number of filters and noise level α.
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Numerical Experiments: 2D
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Conclusion

� Write the phase recovery problem as a MAXCUT like problem.

� Tightness properties equivalent to the matrix completion approach.

� Very fast/scalable algorithms.

Open questions. . . .

� Tightness results in the noisy case, or in the positive case?

� Is the SDP relaxation optimal?
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