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Motivations

Motivations

Several SP applications require the covariance matrix estimation (sources localization,
STAP, Polarimetric SAR classification, radar detection, MIMO...).

Classical radar applications consider the background to be Gaussian.

— The Sample Covariance Matrix (SCM)
@ a simple estimate

@ well-known statistical properties

| \

Robustness : what happens in non-Gaussian models ?
@ High resolution techniques and/or low grazing angle radars

@ Outliers and other parasites are not been taken into account with the Gaussian
model.

@ The SCM gives then poor results.
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Motivations

Why non Gaussian modeling (heterogeneous clutter) ?

@ Grazing angle Radar

7
.V Site-bas
Terrain visible

Terrain masqué

= Impulsive Clutter

@ High Resolution Radar

= Small number of scatters in the Cell Under Test (CUT)
= Central Limit Theorem (CLT) is not valid anymore
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Motivations

Failure of the OGD with non Gaussian background
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FIGURE : Failure of the OGD - Adjustment of the detection threshold - K-distributed clutter with
same power as the Gaussian noise

= Bad performance of the OGD in case of mismodeling
= Introduction of elliptical distributions

= Introduction of robust estimates SO N’D RA
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Results

Results

@ A more flexible and adjustable model
~ Elliptical distributions

@ A robust family of estimators
~~ M-estimators

To use the M-estimators for SP applications, we extend their statistical properties as
well as

@ the statistical property of the resulting ANMF (detection test)
@ the statistical property of the MUSIC statistic (DoA estimation)

The relationship between its Probability of false alarm P (Type-| error) and detection
threshold is also derived.
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Extension to the RMT

Extension to the RMT

In many applications, the dimension of the observation m is large : Hyperspectral
imaging, MIMO-STARP, ...

= The required number N of observations for estimation purposes needs to be
larger : N> m

= BUT this is not the case in practice !

~» Random Matrix Theory

m
~+ Main assumption : N — oo, m — oo and N C€ [0,1]

Preliminary results

Extension of the results on standard M-estimators :
@ asymptotic distribution of the eigenvalues
@ derivation of a robust G-MUSIC

DUNUH.‘-\
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Extension to the RMT

Presentation outline

e Introduction
@ Motivations
@ Results
@ Extension to the RMT
e Estimation and background
@ Modeling the background
@ Estimating the covariance matrix
e Asymptotic distribution of complex M-estimators
@ M-estimators and SCM
@ An important property of complex M-estimators
0 Applications
@ Detection with the ANMF
@ DoA estimation using MUSIC
e Random Matrix Theory
@ Classical Results
@ Robust RMT
@ Applications to DoA estimation

e Conclusions and perspectives SO N-D RA
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Modeling the background

Modeling the background

Complex elliptical distributions

Let z be a complex circular random vector of length m. z has a complex elliptical
distribution (CED) (CE(u, A, gz)) if its PDF can be written

%(2) = IN""h((z — )" (2 - ), (UJ

where h; : [0, 00) — [0, 00) is the density generator and is such as (1) defines a pdf.
@ o is the statistical mean
@ A the scatter matrix
In general (finite second-order moment), M = oo A where
° a=-2¢'(0),
@ ¢ is defined through the characteristic function cxof x by cx(t) = exp(it” 1) ¢(t"At)
SON»RA
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Estimating the covariance matrix

Estimating the covariance matrix

M-estimators

PDF not specified
= MLE can not be derived
= M-estimators are used instead

Let (21, ...,zn) be a N-sample ~ CE(0, A, g;) of length m.

The complex M-estimator of A is defined as the solution of

Vy = 1N Z u (z,’fV,Tzﬂ) znz7, )

n=1

Maronna (1976), Kent and Tyler (1991)
@ Existence
@ Uniqueness

@ Convergence of the recursive algorithm... 50 N'D RA
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Estimating the covariance matrix

Examples of M-estimates

SCM : Huber’s estimate (M-estimate) : FP Estimate :
u(r) =1 [ K/eifr<=e uny="m
“(’)*{ K/rifr>e

u(r) u(r) u(n

Kle
o \\
r r r
e
Remarks : FP Estimate (Tyler 1987 ; Pascal, 2008)
@ Huber = mix between SCM and FP 7 M
@ FP and SCM are "not” M-estimators Vn = N Z z”\; nz,_,
@ FP estimator is the most robust.
SONDRA
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Estimating the covariance matrix

Context

M-estimators

Let us set

V=F [u(z’V*1z) zz’] : 3)

where z ~ CE(0, A, gz).

- (8) admits a unique solution V and V = o\ = o /oM where o is given by
Tyler(1982),

- Vy is a consistent estimate of V.
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M-estimators and SCM

Asymptotic distribution of complex M-estimators

Using the results of Tyler (1982), we derived the following results (Ph.D of M. Mahot) :

Theorem 1 (Asymptotic distribution of Vy)

VN vec(Vy — V) -5 CN (0, Z, Q) (4)
where CN is the complex Gaussian distribution, ¥ the CM and Q the pseudo CM :

T = o(VT ® V) + a2vec(V)vec(V)",

Q =o1(V' ® V) K + aavec(V)vec(V),

where K is the commutation matrix.

1 N
The SCM is defined as Wy = NZ 2,2} where z, are complex independent circular

n=1
zero-mean Gaussian with CM V. Then,

VN vec(Wy — V) -L CN (0, Zw, Quw)

Tw=(V'oV)
Qv=NV"eV)K
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An important property of complex M-estimators

An important property of complex M-estimators

@ Let Vy an estimate of Hermitian positive-definite matrix V that satisfies

VN (vec(Vy — V) -4 CN (0, Z, Q) (5)

with
T = VT @V 4+ vevec(V)vec(V)",
Q = (VT @ V) K + vovec(V)vec(V),

where vy and v, are any real numbers.

SCM M-estimators FP
eg 121 1 ez (m +1 )/m
e Vo 0 o2 7(/77 + 1)//772
More accurate More robust

@ Let H(V) be a r-multivariate function on the set of Hermitian positive-definite
matrices, with continuous first partial derivatives and such as H(V) = H(a\V) for all
a > 0, e.g. the ANMF statistic, the MUSIC statistic. 50 N9 RA
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An important property of complex M-estimators

An important property of complex M-estimators

Theorem 2 (Asymptotic distribution of H(Vy))

VN (H(Vn) — H(V)) =25 CN (0.1, Zp, Qn) (6)
where X and Q4 are defined as
Ty =vH V)V @ V)H (V)"
Qu = H V)V @ V)KH (V)T,

OH(V
where H'(V) = <8ve<£(\3))'

H(SCM) and H(M-estimators) share the same asymptotic distribution (differs from o+)
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Detection with the ANMF

Application : Detection using the ANMF test

@ In a m-vector y, detecting a complex known signal s = Ap embedded in an
additive noise z (with covariance matrix V), can be written as the following
statistical test :

Hypothesis Hy: y=12 Yn=2, n=1,....N
Hypothesis Hy: y=s+z y,=2, n=1,...,N

where the z,’s are N “signal-free” independent observations (secondary data)
used to estimate the noise parameters.

@ Let Vy be an estimate of V.

PNV

>
(PAVLTP)(YAVRTY) A

A(Vn) =

One has A(Vy) = A(aVy) forany o > 0.
SONDRA
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Detection with the ANMF

Probabilities of false alarm

Pr-threshold relation in the Gaussian case of A(SCM) (finite N)

Pa=(1-X)*"2F(a,a—1;b—1;)), (7)

wherea=N-m+2,b= N+ 2and >F; is the Hypergeometric function.

From theorem 2, one has

Pr-threshold relation of A(M-estimators) for all elliptical distributions

For N large and any elliptically distributed noise, the PFA is still given by (7) if we
replace N by N/oy.
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Detection with the ANMF

Simulations

Applications
0000

@ Complex Huber’'s M-estimator.
Figure 1 : Gaussian context, here o1 = 1.066.
Figure 2 : K-distributed clutter (shape parameter : 0.1, and 0.01).
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Detection with the ANMF

Simulations : Probabilities of False Alarm

@ Complex Huber’'s M-estimator.
@ Figure 1 : Gaussian context, here o1 = 1.066.
@ Figure 2 : K-distributed clutter (shape parameter : 0.1).

o
T T T T =
- - - bt

o 0 0 1

0 05 [
! . I a | L | L I i sl de detetion X

Interest of the M-estimators

Validation of theorem (even for small N) .
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Detection with the ANMF

Hyperspectral Imaging - Ph.D of J. Frontera

Now, the statistical mean is non null

(a) Hyperspectral Data (b) AMF-H detector with the SCM (c) ANMF-H detector with the FP

FIGURE : Probability of false alarm versus the detection threshold for m = 50 and N = 168

Perspectives

@ Open problem : joint M-estimators of the mean and the covariance matrix as
solutions of fixed point equations

@ Estimators performance
@ Large dimensional problem : use of RMT
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DoA estimation using MUSIC

MUItiple Signal Classification (MUSIC) method for DoA estimation

@ K direction of arrival 8x on m antennas
@ Gaussian stationary narrowband signal with DoA 20° with additive noise.
@ the DoA is estimated from N snapshots, using the SCM and the Huber’s

M-estimator.
K
z = Z VP S(O0k) Ykt + owr
k=1
HV)  =~(0) = s(0)"EwE}s(6), (V known)

m—K
H(Vy) =4(0) = > \is(0)"&8&i's(0) = H(aVy),  (V unknown)
i=1
where )\; (resp. &) are the eigenvalues (resp.eigenvectors) of V.

The Mean Square Error (MSE) between the estimated angle 9 and the real angle 0 is
then computed (case of one source). 50 N'D RA
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DoA estimation using MUSIC

Simulation using the MUItiple Signal Classification (MUSIC) method

@ A m = 3 uniform linear array (ULA) with half wavelength sensors spacing is used,

@ Gaussian stationary narrowband signal with DoA 20° with additive noise.

@ the DoA is estimated from N snapshots, using the SCM, the Huber’'s M-estimator
and the FP estimator.

10° - 0
i.‘ —---SCM B 100 By ----sCM
£ Huber 8 F \‘\ Huber ||
’.% ----FPE | 101 L RRR S ----FPE ||
S T S (¢ E|
| B Huberwith oy Ndata || | TTTTmeeeo T El
L -4+ FPE with 2!  data s
NS A 1072 3
s , E
g 7 E
1072 | | | | 1076 | | | | 1
100 200 300 400 500 100 200 300 400 500
nombre d'observations n nombre d’observations n
(a) White Gaussian additive noise (b) K-distributed additive noise (v = 0.1)

FIGURE : MSE of 8 vs the number N of observations, with m = 3. 5 O N‘D RA
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Classical Results

RMT - Classical results

Assumptions :

m 1L,
® N,m— ooand 5 —c€(0,1)and Wy = N;ann the SCM

@ (zy,...,2y) be a N-sample, i.i.d with finite fourth-order moment

Thus one has :
1) FY = FMP
where FWv (resp. FMF) stands for the distribution of the eigenvalues of Wy (resp.
the Marcenko-Pastur distribution) and = stands for the weak convergence.

m
2) 4(0) = Z J{&,-s(e)Hé,éf’ s(0) is the G-MUSIC statistic (Mestre, 2008)
i=1
h A 7} .
where . 14+ ik (ﬁf 5\,'likﬁk> S N=K

N—K A i ;
—zk:1< T - Ji>N—K

=X Xi—ig

with 3; < ... < X the eigenvalues of Wy and i1 < ... < iy the eigenvalues of

diag(X) — \f\f NS VA LR SON‘DRA
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Robust RMT

Robust RMT with R. Couillet and J.W. Silverstein

Assumptions :

m
@ N,m— oo and N ° € (0,1) and Vy a M-estimor (with previous assumptions)

@ (z1,...,zy) be a N-sample, i.i.d with finite fourth-order moment
Thus, one has shown in [1] :

m
1) [~ "(1) Vv — Wy|| 225 0 when N, m — oo and N e
where ||.|| stands for the spectral norm.

Classical results in RMT can be extended to the
M-estimators

m

2) 4(0) = Bis(0)"&8f's(9) is STILL the G-MUSIC statistic for the M-estimators

i=1
(for the eigenvalues of V)

[1] R. Couillet, F. Pascal et J. W. Silverstein, "Robust M-Estimation for Array Processing :
A Random Matrix Approach”, Information Theory, IEEE Transactions on (submitted to), ¢ N,D RA
2012. arXiv :1204.5320v1.
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Applications to DoA estimation

Application to DoA estimation with MUSIC for different additive clutter

~-~-MUSIC (without RMT)
-~~~ Robust MUSIC (MM Ph.D)
| | —a— G-MUSIC (With RMT)
—A— Robust G-MUSIC

—----MUSIC (without RMT)
-~~~ Robust MUSIC (MM Ph.D)
107 H —4&— G-MUSIC (with RMT)
—&A— Robust G-MUSIC

T R T
—10 0 10 20 30 -10 0 10 20 30
SNR [dB] SNR [dB]

(a) Homogeneous noise (~ Gaussian), 50 data of (b) Heterogeneous clutter, 50 data of size 10
size 10

FIGURE : MSE performance of the various MUSIC estimators for K = 1 source

~ 6dB gain for DoA estimation with MUSIC algorithm

for various clutter scenarios 0 N»D RA
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Applications to DoA estimation

Resolution probability of 2 sources

! : 27
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FIGURE : Resolution performance of the MUSIC estimators in homogeneous clutter for 50 data of
size 10

~ 7dB gain for resolution performance on classical

MUSIC SONlDRA
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Conclusions and Perspectives

@ Conclusions

e Derivation of the complex M-estimators asymptotic distribution, the robust ANMF and
the MUSIC statistic asymptotic distributions.

@ In the Gaussian case, M-estimators built with o1 N data behaves as SCM built with N
data (i.e. slight loss of performance in Gaussian case).

@ Better estimation in non-Gaussian cases.

o Extension to the Robust RMT and derivation of the Robust G-MUSIC method.

@ Perspectives

o Low Rank techniques for robust estimation

o Robust estimation with a location parameter (non-zero-mean observation) : e.g.
Hyperspectral imaging

e Second-order moment in RMT

o Eigenvalues distribution of the FP estimator (open-problem)
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Conclusions
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Thank you for your attention !

Questions ?
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