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Introduction
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with fuels

Energetic context

Improving the production efficiency
of the second generation biofuels by
optimizing the enzymatic hydrolysis

phase

Biological context

Genetic target identification in
Trichoderma reesei to improve the
cellulase production, involved in the

biofuel production process

Mathematical context

Novel mathematical models based
on graph optimization to infer Gene
Regulatory Networks (GRNs) and

identify new target genes

GRNs: powerful tools to visualize gene interaction relationships from high-throughput data
Difficult problem: thousands of genes expressed in only few conditions/replicates

Very active community with DREAM challenges and many inference methods:
Relevance Network, ARACNE, SIMoNe, NARROMI, CLR, GENIE3...

Global strategy

Inferring a GRN: recovering interactions between transcription factors and their target genes i.e. in a graph G(V , E), find a set of edges E∗(⊆ E) reflecting regulatory links
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G∗(V , E∗): Inferred Gene
Regulatory Network (GRN)
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G: graph
V : set of vertices (genes)
E : set of edges weighted

by pairwise gene similarity
measure s

G∗: inferred graph
E∗: set of selected

regulatory links
(V : reduced set of genes)

GRN inference problem treated as a segmentation problem

• Let xi,j be the binary label of the edges ei,j such that

xi,j =

{
1 if ei,j ∈ E∗

0 otherwise.

• Inference problem re-expressed as cost function minimization→ optimal labeling x∗ signaling the edge pres-
ence (or absence) in the inferred graph G∗(V , E∗)

How to define a biologically sound cost function ?

Proposed cost function

Generic Cost function

minimize
x∈{0,1}n

∑
(i,j)∈E

si,jΨ(xi,j − 1)

︸ ︷︷ ︸
Disfavors the deletion
of strongly weighted
edges

+
∑

(i,j)∈E
λi,jΨ(xi,j)︸ ︷︷ ︸

Favors the selection
of edges linked to a
transcription factor (TF)

+µΦ((xi′,j′)(i′,j′)∈Ni,j))︸ ︷︷ ︸
Structural a priori

where

• si,j ∈ [0, 1] is a similarity weight between the expression profiles of genes i and j

• λi,j ∈ [0, 1] a parameter depending on the nature (regulator or not) of genes i and j

• µ ≥ 0 a regularization parameter

• Ni,j a local neighborhood of the edge ei,j

T ⊂ V : a set of transcription factors (TFs)

Structural a priori

Co-regulation property

• Assuming that a gene k is co-regulated by two
TFs (j, j′), then ∀i ∈ V\T the inferences of ei,j
and ei,j′ are coupled

k i

j j′
sj,k> γ

sj′,k> γ

sj,j′> γ

• Φ(xi,j) =
∑

i∈V\T
(j,j′)∈T 2

αi,j,j′|xi,j − xi,j′|

Connectivity constraint

• The degree of connectivity of non transcription
factors (TFs) is enforced to be close to a constant
number d

TF

TF

TF

TF

TF

TF

TF

TF TF

• Φ(xi,j) =
∑

i∈V\T

(∑
j∈V

xi,j − d

)2

Optimization strategy

Objective: Design appropriate algorithms to compute the optimal labeling x∗

• BRANE Cut: Discrete Optimization via Maximal Flow algorithm [4]

minimize
x∈{0,1}n

∑
(i,j)∈E

si,j|xi,j − 1| +
∑

(i,j)∈E
λi,j|xi,j| + µ

∑
i∈V\T

(j,j′)∈T 2

αi,j,j′|xi,j − xi,j′|

︸ ︷︷ ︸
f

• f : Sub-modular function

• Minimal Cut - Maximal Flow duality

• Maximal Flow algorithm applied to an
appropriate flow network Gf

Algorithm 1: Maximal Flow algorithm
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• BRANE Relax [6]: Continuous Optimization via Proximal methods [1]

minimize
x∈Rn

∑
(i,j)∈E

si,j(1− xi,j) +
∑

(i,j)∈E
λi,jxi,j + µ

∑
i∈V\T

∑
j∈V

xi,j − d

2

︸ ︷︷ ︸
f1

+ ι[0,1]n(x)

︸ ︷︷ ︸
f2

• f1: differentiable function with β-Lipschitz gradient

• f2: convex function (relaxation)

• Solved by Forward-Backward algorithm using Pre-
conditioning and Block-Coordinate improvement
strategies

Algorithm 2: Block-Coordinate Preconditioned

Forward-Backward (BC-P-FB) algorithm

Fix x0 ∈ RN

for n = 0, 1, . . . do

Select the index kn ∈ {1, . . . , p} of a block of variables

z
(kn)
n = x

(kn)
n − γnA−1kn Ω>kn∇Φ(Ωxn − d)

x
(kn)
n+1 = prox

γ−1
n Akn ,f

(kn)
1

(z
(kn)
n )

x
(k)
n+1 = x

(k)
n , k ∈ {1, . . . , p} \ {kn}

Results

Comparison, on the DREAM4 in silico multifactorial challenge dataset
[5] containing five networks, to two state-of-the-art methods:

• Information-theoretic score-based: CLR [2]

• Model-based: GENIE3 [3]

The evaluation is performed by computing:

Precision =
TP

TP + FP
and Recall =

TP

TP + FN
,

where TP: True Positive, FP: False Positive and FN: False Negative.

Results are given in terms of AUPR: Area Under the Precision-Recall
curve.

Network 1 2 3 4 5

GENIE3 0.239 0.260 0.316 0.301 0.295
CLR 0.249 0.258 0.294 0.296 0.299

BRANE Cut 0.256 0.261 0.317 0.317 0.316
BRANE Relax 0.246 0.264 0.321 0.317 0.317

(a) Precision-Recall (PR)
curves for various GRN infer-
ence method: CLR, GENIE3
and BRANE Cut

(b) Comparison of the conver-
gence speed for various algo-
rithms: FB, Preconditioned-
FB, BlockCoordinate-P-FB
and FISTA for BRANE Relax
formulation

Conclusion

• Two variational formulations of the inference problem, taking
into account structural a priori, deliver promising results

• On this tested dataset, CLR and GENIE3 are outperformed

• The continuous approach allows us to interpret the result as a
confidence score of the edge presence

• Existing GRN methods may benefit from our approach, as they
take a weighted graph as input
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