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Introduction
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Energetical context:

Improving the production efficiency
of the second generation biofuels by
optimizing the enzymatic hydrolysis

phase

Biological context:

Genetic target identification in
Trichoderma reesei to improve the
cellulase production, involved in the

biofuel production process

Mathematical context:

Novel algorithmic method based on
graph optimization to infer Gene

Regulatory Networks (GRNs) and
identify new target genes

GRN: powerful tool to visualize gene interaction relationships from high-throughput data
Difficult problem: thousands of genes expressed in only few conditions

This last decade, very active community with DREAM challenge and many inference methods (RN, ARACNE,
SIMoNe, NARROMI, CLR, GENIE3 ...)

Global strategy

Inferring a GRN: recovering the interactions between the transcription factors and their target genes i.e. in
the graph G(V , E), find a set of edges E∗(⊆ E) reflecting regulatory links
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G(V , E)
G a graph

V a set of vertices (genes)
E a set of edges weighted

by pairwise gene
similarity measure m

Intermediate graph Gf
called flow network

G∗(V , E∗)
G∗ the inferred graph
V the set of genes

E∗ the set of regulatory links
selected by Graph cuts

Proposed cost function

Structural a priori

• Differential degree according to the nature of the nodes favoring
TF-nonTF interactions

• Enforces co-regulation relationships

• Let T ⊂ V a set of transcription factors (TFs) and xi,j be the binary label of the edges ei,j such that:

xi,j =

{
1 if ei,j ∈ E∗

0 otherwise.

• Inference problem re-expressed as a cost function to be minimized:

Cost function

minimize
x∈{0;1}n

∑
(i,j)∈V×V

i 6=j

mi,j|xi,j − 1|

︸ ︷︷ ︸
Disfavors the deletion
of strongly weighted
edges

+
∑

(i,j)∈V×V
i 6=j

λi,jxi,j

︸ ︷︷ ︸
Favors the selection
of edges linked to a
transcription factor (TF)

+
∑

i∈V\T ,
(j,j′)∈T ×T

αi,j,j′|xi,j − xi,j′|.

︸ ︷︷ ︸
Enforces the coupling
of regulatory relationships

Optimization strategy

Thanks to the min-cut/max-flow duality, computing the optimal labeling x∗ minimizing the above equation
may be performed by a maximal flow algorithm on a flow network Gf .

A flow f is a function assigning a real value at each edge under two main constraints:

• Capacity constraint: the flow in each edge is less than the capacity (weight) of the edges

• Flow conservation: at each node, the entering flow equals the leaving flow

The flow network Gf

We used construction rules given by [3] to build the flow network Gf allowing us to compute x∗:

• Two specific nodes: the source s (0-in-degree) and the sink t (0-out-degree)

• n = |E| nodes vi,j linked to the source s and p = |V| nodes gi linked to the sink t

The capacities of the different edges in Gf are given by the different weights mi,j, λi,j and αi,j,j′ of the
above equation. The edge saturation allows us to label the nodes vi,j of Gf with binary labels xi,j:

• nodes vi,j linked to the source s via a non-saturated path: xi,j = 1

• nodes vi,j linked to the think t via a non-saturated path: xi,j = 0

With respect to the two constraints on the flow, finding the maximal flow from s to t in the flow network
Gf , give us the optimal labeling x∗ according to the cost function
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Results

Comparison to two state-of-the-art methods: CLR [1] and GENIE3 [2] on two kinds of dataset: DREAM4 [4]
(in silico multifactorial challenge) and a real dataset of Escherichia coli also used in [1]. The evaluation is
performed computing Precision and Recall for each inferred graph.

Precision =
TP

TP + FP
and Recall =

TP

TP + FN
,

where TP: True Positive, FP: False Positive and FN: False Negative. Results are given in terms of AUPR:
Area Under the Precision-Recall curve.

In silico data: multifactorial DREAM4 Challenge

Network 1

Method GENIE31 GENIE32 CLR Our method
AUPR 0.246 0.239 0.249 0.256

Network 2

Method GENIE31 GENIE32 CLR Our method
AUPR 0.258 0.260 0.258 0.261

Network 3

Method GENIE31 GENIE32 CLR Our method
AUPR 0.300 0.316 0.294 0.317

Network 4

Method GENIE31 GENIE32 CLR Our method
AUPR 0.292 0.301 0.296 0.317

Network 5

Method GENIE31 GENIE32 CLR Our method
AUPR 0.294 0.295 0.299 0.316

GENIE31: all genes used as input genes GENIE32: TF genes used as input genes

Real data: Escherichia coli compendium

Method GENIE3 CLR Our method
AUPR (×10−2) 6.28 6.11 6.45
AUPR Gain (%) 2.2 5.6

Method GENIE3 CLR Our method
Total. comp. time (min) 420 30 30.05

Comp. time Gain 14 × faster none

Precision (%) Recall (%)
GENIE3 CLR Our method

83.8 2.24 3.43 3.61
80 3.70 3.95 4.37
78 3.89 4.52 4.80
63.6 5.62 5.83 6.23

Precision (%) TP edges
GENIE3 CLR Our method

83.8 74 113 119
80 122 130 145
78 125 149 158
63.6 185 192 205

Conclusion

• Our formulation taking into account structural a priori and the fast optimization via Graph cuts allow
us to outperform state-of-the-art methods

• Existing GRN methods may benefit from our approach, as it takes a weighted graph as an input


