

INCORPORATING STRUCTURAL *a priori* in Gene Regulatory Network Inference USING Graph Cuts

Aurélie Pirayre^{1,2}, Camille Couprie¹, Laurent Duval¹, Frédérique Bidard¹, Jean-Christophe Pesquet²

¹ IFP Energies nouvelles
² Univ. Paris-Est, LIGM, UMR CNRS 8049

Inferring a GRN: recovering the interactions between the transcription factors and their target genes i.e. in the graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$, find a set of edges $\mathcal{E}^* \subseteq \mathcal{E}$ reflecting regulatory links

Comparison to two state-of-the-art methods: CLR [1] and GENIE3 [2] on two kinds of dataset: DREAM4 [4] (in silico multifactorial challenge) and a real dataset of *Escherichia coli* also used in [1]. The evaluation is performed computing Precision and Recall for each inferred graph.

$$Precision = \frac{TP}{TP + FP} \qquad and \qquad Recall = \frac{TP}{TP + FN}$$

where TP: True Positive, FP: False Positive and FN: False Negative. Results are given in terms of AUPR: Area Under the Precision-Recall curve.

• Inference problem re-expressed as a cost function to be minimized:

Optimization strategy

Thanks to the min-cut/max-flow duality, computing the optimal labeling \mathbf{x}^* minimizing the above equation may be performed by a maximal flow algorithm on a flow network \mathcal{G}_f .

- A flow f is a function assigning a real value at each edge under two main constraints:
- Capacity constraint: the flow in each edge is less than the capacity (weight) of the edges
- Flow conservation: at each node, the entering flow equals the leaving flow

The flow network \mathcal{G}_f

We used construction rules given by [3] to build the flow network \mathcal{G}_f allowing us to compute \mathbf{x}^* :

- Two specific nodes: the source s (0-in-degree) and the sink t (0-out-degree)
- $n = |\mathcal{E}|$ nodes $v_{i,j}$ linked to the source s and $p = |\mathcal{V}|$ nodes g_i linked to the sink t

	Network 4			
Method	GENIE3 ¹	GENIE3 ²	CLR	Our method
AUPR	0.292	0.301	0.296	0.317

UNIVERSITÉ

- PARIS-EST

	Network 5			
Method	GENIE3 ¹	GENIE3 ²	CLR	Our method
AUPR	0.294	0.295	0.299	0.316

GENIE 3^1 : all genes used as input genes GENIE 3^2 : TF genes used as input genes

Real data: Escherichia coli compendium

Method	GENIE3	CLR	Our method
AUPR (×10 ⁻²)	6.28	6.11	6.45
AUPR Gain (%)	2.2	5.6	
Method	GENIE3	CLR	Our method
Total. comp. time (min)	420	30	30.05
Comp. time Gain	$14 \times \text{faster}$	none	

Precision (%)	Recall $(\%)$			
	GENIE3	CLR	Our method	
83.8	2.24	3.43	3.61	
80	3.70	3.95	4.37	
78	3.89	4.52	4.80	
63.6	5.62	5.83	6.23	
Precision (%)	TP edges			
	GENIE3	CLR	Our method	
83.8	74	113	119	
	100	1.0.0	115	
80	122	130	140	
80 78	$\frac{122}{125}$	130 149	$\frac{145}{158}$	

The capacities of the different edges in \mathcal{G}_f are given by the different weights $m_{i,j}$, $\lambda_{i,j}$ and $\alpha_{i,j,j'}$ of the above equation. The edge saturation allows us to label the nodes $v_{i,j}$ of \mathcal{G}_f with binary labels $x_{i,j}$:

- nodes $v_{i,j}$ linked to the source s via a non-saturated path: $x_{i,j} = 1$
- nodes $v_{i,j}$ linked to the think t via a non-saturated path: $x_{i,j} = 0$

With respect to the two constraints on the flow, finding the maximal flow from s to t in the flow network \mathcal{G}_f , give us the optimal labeling \mathbf{x}^* according to the cost function

References

- [1] J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. J. Collins, and T. S. Gardner. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol., 5:8, 2007.
- [2] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts. Inferring regulatory networks from expression data using tree-based methods. Plos ONE, 5(9):e12776, sept 2010.
- [3] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts. *IEEE Trans. Patt. Anal. Mach. Int.*, 26:65–81, 2004.
- [4] D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and G. Stolovitzky. Revealing strengths and weaknesses of methods for gene network inference. Proc. Nat. Acad. Sci. U.S.A., 107(14):6286-6291, Apr 2010.

Conclusion

- Our formulation taking into account structural *a priori* and the fast optimization *via* Graph cuts allow us to outperform state-of-the-art methods
- Existing GRN methods may benefit from our approach, as it takes a weighted graph as an input