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Introduction: reverse biological engineering

What is a Gene Regulatory Network (GRN)?

V : genes{
T : regulating genes TFs

V\T : regulated genes TFs

E∗: regulatory relationships
between genes

⇓
G∗(V, E∗): inferred GRN

How to obtain E∗?

G(V , E): fully connected
network

E : edges weighted by ω
ω: strength of the links

between genes
⇓

Thresholding on ω

How to obtain ω?

Transcriptomic data:
microarray or RNAseq

Gene expression profiles: gene
signatures
⇓

ωi,j: similarity between
profiles of genes i and j

Inferring a GRN: in a complete graph G(V , E) weighted by ω, find a set of edges E∗ (⊆ E) reflecting regulatory links between genes
Many inference methods: score-based (e.g. mutual information [2]) or model-based approaches (e.g. gaussian graphical models [4])

Problem formulation

Thresholding step on ω treated as an edge segmentation problem

Let xi,j be the binary label of the edges ei,j such that xi,j =

{
1 if ei,j ∈ E∗

0 otherwise.

⇒ Find the optimal labeling x∗ coding for regulatory links

Biological a priori

Functional constraint Connectivity constraint

TFTF TFTF

TFTF

TFTF

TFTF

TFTF

TFTF

TFTF

TFTF

TFTF

TFTF

TFTF

TFTF TFTF

TFTF

TFTF

TFTF

TFTF

TF-TF regulatory re-
lationships expected
to be less frequent
than TF-TF

TF

TF

TF

TF

TF

TF

TF

TF TF

TF gene degree of
connectivity expected
to be close to a small
constant d.

Proposed cost function

minimize
x∈{0,1}n

∑
(i,j)∈E

ωi,j(1− xi,j)︸ ︷︷ ︸
Favors strongly
weighted edges

+
∑

(i,j)∈E

λi,jxi,j︸ ︷︷ ︸
Favors TF-TF
edge presence

+ µ
∑
i∈V\T

Φ

∑
j∈V

xi,j − d


︸ ︷︷ ︸

Enforces TF degree
to be close to d

with

•λi,j ∈ [0, 1]: parameter depending on the nature (TF or TF) of genes i and j

•µ ≥ 0: regularization parameter

•Φ(.): Lipschitz-gradient distance function

Optimization strategy

Relaxation of the integrality constraint on x

minimize
x∈Rn

ω>(1− x) + λ>x + µ Φ (Ωx− d)︸ ︷︷ ︸
f1

+ ι[0,1]n(x)︸ ︷︷ ︸
f2

• f1: differentiable and Lipschitz-gradient function

• f2: convex function

⇒ Optimization via proximal method

• proximal operator: proxf(x) = arg min
y

(
f (y) + 1

2||y − x||
2
R

)
• closed-form for proxf2: simple projection onto the convex set [0, 1]n

Acceleration tricks [1] and algorithm

•Preconditioning approach
Majorization-Minimization principle to f1 ⇒ Quadratic majorant of f1

•Block-coordinate approach
Additively block separable function f2 ⇒ Optimization of a subset of variables at
each iteration

Algorithm 1: Block-Coordinate Preconditioned Forward-Backward (BC-P-FB)
algorithm

Fix x0 ∈ RN

for n = 0, 1, . . . do
Select the index kn ∈ {1, . . . , p} of a block of variables

z
(kn)
n = x

(kn)
n − γnA−1

kn
Ω>kn∇Φ(Ωxn − d)

x
(kn)
n+1 = prox

γ−1n Akn,f
(kn)
2

(z
(kn)
n )

x
(k)
n+1 = x

(k)
n , k ∈ {1, . . . , p} \ {kn}

Results

•Dataset validation: DREAM4 international challenge

•Comparison to state-of-the-art: CLR [2] and GENIE3 [3]

•Evaluation criterion: AUPR (Area Under the Precision-Recall curve)

Inference results

Network index 1 2 3 4 5 Mean

AUPR
CLR 0.252 0.275 0.312 0.313 0.317 0.294

GENIE3 0.257 0.265 0.317 0.298 0.302 0.293
BRANE Relax 0.268 0.296 0.346 0.317 0.332 0.312

⇒ Improvement of 6% over the five networks

Speedup results

Conclusions

•The variational formulation, taking into account biological assumptions translated
into structural a priori, delivers promising results

•CLR and GENIE3 are outperformed on DREAM4 international challenge

•Existing GRN methods may benefit from our approach, as they take a weighted
graph as input
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