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Abstract—With the advent of high-throughput biological techniques,
arose the need to handle gene expression data. Inferring Gene Regulatory
Networks (GRNs) from this kind of data is especially useful for sketching
transcriptional regulatory pathways and helps to understand phenotype
variations. Given all pairwise gene similarity information, we formulate
GRN inference as an energy minimization problem to determine the
presence of edges in the final graph. Taking into account expected pat-
terns in the graph structure, biological a priori are incorporated into the
variational formulation. Different priors lead to different mathematical
properties of the cost function, for which various optimization strategies
can be applied. Experimental results show a performance improvement
(in terms of Area Under the Precision-Recall curve) and/or computation
time compared with state-of-the-art methods.

I. INTRODUCTION

One way of improving biological knowledge is to handle and ana-
lyze “omics” data generated by high-throughput techniques. Focusing
on the context of transcriptomic data, the identification of genes
involved in phenotypic variations is currently performed thanks to
Gene Regulatory Network (GRN) analysis such as gene clustering
[1]. A GRN is a graph containing gene regulatory pathways for a
given living organism. It is obtained from gene expression signals:
for each gene, the signal corresponds to the gene expression level in
different conditions (physico-chemical or temporal conditions, culture
medium or mutated strains). Then, inferring a GRN aims at selecting,
among all plausible links, a subset of regulatory links reflecting actual
regulatory relationships between genes. Unfortunately, recovering
useful information from this collection of signals remains a difficult
task due to the small number of observations (number of conditions)
compared with the number of genes. In this work, we develop a novel
variational approach for taking into account expected graph patterns
according to some biological a priori. Translating such biological
assumptions into an appropriate cost function, we thus formulate the
GRN inference problem as an optimization one.

II. MODELS

A complete gene network may be viewed as a graph G(V, E),
where V = {v1, · · · , vg} is a set of vertices (corresponding to the
genes), g is the number of genes, and E = {e1, · · · , en} a set of
edges (corresponding to plausible gene interactions), the number of
edges being n = g(g − 1). Inferring a GRN G∗ from G aims
at selecting an optimal subset of edges E∗ ⊂ E reflecting actual
regulatory relationships between genes. This selection problem may
be formulated by defining a cost function to minimize where the
variables xi,j correspond to edge labels for ei,j such that xi,j = 1
if the edge ei,j is in the final graph and 0 otherwise.

Weighting all possible pairwise gene relationships by the similarity
si,j between gene expression profiles for gene i and j and assuming
that a reliable list of putative transcription factors (i.e. regulator
genes), denoted by T , is available, we define some biological and
structural a priori which may be incorporated into our cost function
based on two rationales: i) the larger the edge weights si,j , the more

favorable the edge selection, ii) links involving a regulator gene are
favored via the parameters (λi,j)(i,j)∈E . Two variational priors were
used according to the choice of function Φ, leading to the following
general criterion form to minimize:

∑
(i,j)∈E

si,j(1− xi,j)+
∑

(i,j)∈E

λi,jxi,j+µΦ((xi′,j′)(i′,j′)∈Ni,j
), (1)

where µ is a regularization parameter and, for every (i, j) ∈ E , Ni,j

denotes some local neighborhood of edge ei,j . Depending on the
prior used, mathematical properties of cost function (1) are changed
and suitable optimization strategies have to be devised.
• Keeping the degree of regulated genes close to a constant

number d is enforced by choosing Φ as a composition of a
linear averaging operator with a norm. A relaxation of the
binary constraint on the vector x of edge labels is then necessary
to minimize (1) efficiently by using recent convex optimization
methods [2].

• Enforcing a co-regulation property (i.e. favoring a similar label
for xi,j and xi,j′ when genes j and j′ are likely to act together)
via a total variation like function Φ makes the criterion sub-
modular. Thus, a discrete optimization process can be carried
out, such as a maximum flow algorithm, in order to obtain an
optimal labeling [3].

III. RESULTS

We performed comparisons of our approach with two state-of-the-
art methods: Context Likelihood Relatedness (CLR) [4] and GENIE3
[5]. The performance was evaluated in terms of Area Under the
Precision-Recall curves (AUPR), where the precision reflects the
proportion of correctly inferred edges compared to the total number
of inferred edges, while the recall indicates the proportion of correctly
inferred edges with respect to the edges corresponding to the gold
standard. Results obtained on the synthetic data from the DREAM4
multifactorial challenge are quite promising. In term of AUPR, our
method outperforms both CLR and GENIE3 approaches while having
a low computational complexity.
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