Homework 6

Due: November 20, 2007, 12:15am (end of class)

Reading: Textbook sections 11.6-11.9

Problem 1:

Let $h(n)$ denote the impulse response of a lowpass half-band filter with a zero at $z=-1$. Show that

$$
h(0)=\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} h(n) .
$$

Problem 2:

Show that the two possible cascade configurations of a factor-of- L up-sampler and a factor-of- M down-sampler shown in Fig. 1 are equivalent if and only if the L and M are coprime.

Figure 1:

Problem 3:

Consider the systems shown in Fig. 2. Suppose that $H_{1}\left(e^{j \omega}\right)$ is fixed and known. Find $H_{2}\left(e^{j \omega}\right)$, the frequency response of an LTI system, such that $y_{2}(n)=y_{1}(n)$ if the inputs to the systems are the same.

Figure 2:

Problem 4:

Consider a sequence $x(n)$ with $X\left(e^{j \omega}\right)$ as shown in Fig. 3(a). Suppose we generate the sequences $v(n)$ and $y(n)$ as in Fig. 3(b), where

$$
H\left(e^{j \omega}\right)= \begin{cases}1, & \text { for }|\omega|<\pi / 2 \\ 0, & \text { for } \pi / 2 \leq|\omega| \leq \pi\end{cases}
$$

Plot the quantities $V\left(e^{j \omega}\right)$ and $Y\left(e^{j \omega}\right)$.
Consider the structure shown in Fig. 4(a) with input transforms and filter responses as indicated in Fig. 4(a). Sketch the quantities $Y_{0}\left(e^{j \omega}\right)$ and $Y_{1}\left(e^{j \omega}\right)$.
(a)

(b)

Figure 3:

Problem 5:

The multirate system of Fig. 5 implements a fixed delay of L / M samples where L and M are relatively prime integers. Let $H(z)$ be a Type 1 length N linear-phase lowpass filter with a cutoff at π / M and a passband magnitude approximately equal to M. Develop the relation between the discrete-time Fourier transforms $Y\left(e^{j \omega}\right)$ and $X\left(e^{j \omega}\right)$ of the output $y(n)$ and the input $x(n)$, respectively, assuming $N=$ $2 K M+1$, where K is a positive integer.
(a)

(b)

Figure 4:

Figure 5:

