Homework 1: Solutions

Problems from textbook:

Problem 6.1: (20 points)
$F=\Omega /(2 \pi)$
(a) $d x_{a}(t) / d t \circ \bullet \hat{X}_{a}(F)=j 2 \pi F X_{a}(F)$, then $F_{s}=2 B$
(b) $x_{a}^{2}(t) \circ \bullet \hat{X}_{a}(F)=\hat{X}_{a}(F)=X_{a}(F) * X_{a}(F)$, then $F_{s}=4 B$
(c) $x_{a}(2 t) \circ \bullet \hat{X}_{a}(F)=2 X_{a}(F / 2)$, then $F_{s}>4 B$
(d) $x_{a}(t) \cos (6 \pi B t) \circ \bullet \hat{X}_{a}(F)=0.5 X_{a}(F+3 B)+0.5 X_{a}(F-3 B)$, resulting in $F_{L}=2 B$ and $F_{H}=4 B$. Hence, $F_{s}=4 B$.
(e) $x_{a}(t) \cos (7 \pi B t) \circ \bullet \hat{X}_{a}(F)=0.5 X_{a}(F+3.5 B)+0.5 X_{a}(F-3.5 B)$, resulting in $F_{L}=5 B / 2$ and $F_{H}=9 B / 2$. Hence, $k_{\max }=\left\lfloor F_{H} / B\right\rfloor$ and $F_{s}=2 F_{H} / k_{\max }=9 B / 2$.

Problem 6.9: (20 points)
(a) $F=\Omega /(2 \pi)$

$$
\begin{aligned}
x_{a}(t) & =e^{-j 2 \pi F_{0} t} \cdot u(t) \\
X_{a}(F) & =\int_{0}^{\infty} x_{a}(t) e^{-j 2 \pi F t} d t \\
& =\int_{0}^{\infty} e^{-j 2 \pi F_{0} t} e^{-j 2 \pi F t} d t \\
& =\int_{0}^{\infty} e^{-j 2 \pi\left(F+F_{0}\right) t} d t \\
& =\left.\frac{e^{-j 2 \pi\left(F+F_{0}\right) t}}{-j 2 \pi\left(F+F_{0}\right)}\right|_{0} ^{\infty} \\
X_{a}(F) & =\frac{1}{j 2 \pi\left(F+F_{0}\right)}+\frac{1}{2} \delta\left(F+F_{0}\right)
\end{aligned}
$$

(b) $\omega=2 \pi f, f=F / F_{s}$

$$
\begin{aligned}
x(n) & =e^{-j 2 \pi n F_{0} / F_{s}} \cdot u(n) \\
X(f) & =\sum_{n=-\infty}^{\infty} x(n) e^{-j 2 \pi f n} \\
& =\sum_{n=0}^{\infty} e^{-j 2 \pi n F_{0} / F_{s}} e^{-j 2 \pi f n} \\
& =\sum_{n=0}^{\infty} e^{-j 2 \pi n\left(f+F_{0} / F_{s}\right)} \\
& =\frac{1}{1-e^{-j 2 \pi\left(f+F_{0} / F_{s}\right)}}+\pi \sum_{\lambda=-\infty}^{\infty} \delta\left(2 \pi\left(f+F_{0} / F_{s}\right)+2 \pi \lambda\right)
\end{aligned}
$$

(with $u(n) \circ \bullet \frac{1}{1-e^{-j \omega}}+\pi \sum_{\lambda=-\infty}^{\infty} \delta(\omega+2 \pi \lambda)$)
(e) Signifcant aliasing occurs at $F_{s}=10 \mathrm{~Hz}$.

Problem 1: (20 points)
(a) Since there is no aliasing involved in this process, we may choose T to be any value (D/A converter). Choose $T=1$ for simplicity $\Rightarrow X_{a}(j \Omega)=0$
for $|\Omega| \geq \frac{\pi}{T}$. Since $Y_{a}(j \Omega)=H_{a}(j \Omega) \cdot V_{a}(j \Omega), Y_{a}(j \Omega)=0$ for $|\Omega| \geq \frac{\pi}{T}$. Therefore, there will be no aliasing problems in going from $y_{a}(t)$ to $y(n)$.

Recall that the relationship $\Omega=\omega / T$. We can simply use this in our system conversion for $T=1$:

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =e^{-j \omega / 2} \\
H_{a}(j \Omega) & =e^{-j \Omega T / 2}=e^{-j \Omega / 2}
\end{aligned}
$$

Note that the choice of T and therefore $H_{a}(j \Omega)$ is not unique.
(b)

$$
\begin{aligned}
\cos \left(\frac{5}{2} \pi n-\frac{\pi}{4}\right) & =\frac{1}{2}\left[e^{j\left(\frac{5}{2} \pi n-\frac{\pi}{4}\right)}+e^{-j\left(\frac{5}{2} \pi n-\frac{\pi}{4}\right)}\right] \\
& =\frac{1}{2} e^{j \frac{5}{2} \pi n} e^{-j \frac{\pi}{4}}+\frac{1}{2} e^{-j \frac{5}{2} \pi n} e^{j \frac{\pi}{4}}
\end{aligned}
$$

Since $H\left(e^{j \Omega}\right)$ is an LTI system, we can $£$ nd the response to each of the two eigenfunctions separately:

$$
y(n)=\frac{1}{2} e^{-j \frac{\pi}{4}} H\left(e^{j \frac{5}{2} \pi}\right) e^{j \frac{5}{2} \pi n}+\frac{1}{2} e^{j \frac{\pi}{4}} H\left(e^{-j \frac{5}{2} \pi}\right) e^{-j \frac{5 \pi}{2} n} .
$$

Since $H\left(e^{j \omega}\right)$ is defned for $0 \leq|\omega| \leq \pi$ we must evaluate the frequency at the baseband, $5 \pi / 2 \Rightarrow 5 \pi / 2-2 \pi=\pi / 2$. Therefore, $H\left(e^{j \frac{5}{2} \pi}\right)=e^{-j \frac{\pi}{4}}$, $H\left(e^{-j \frac{5}{2} \pi}\right)=e^{j \frac{\pi}{4}}$ and

$$
y(n)=\frac{1}{2}\left[e^{j\left(\frac{5}{2} \pi n-\frac{\pi}{2}\right)}+e^{-j\left(\frac{5}{2} \pi n-\frac{\pi}{2}\right)}\right]=\cos \left(\frac{5}{2} \pi n-\frac{\pi}{2}\right) .
$$

Problem 2: (40 points)
(a) $y_{a 1}(t)=1 / T \cdot y_{a 2}(t)$ (constant factor): Convolution is a linear process, aliasing is a linear process. Periodic convolution is equivalent to convolution followed by aliasing.
$y_{a 1}(t) \neq x_{a}^{2}(t)$: System 2 at step 1 shows $\mathcal{F}\left\{x_{a}^{2}(t)\right\}$. This is clearly not $\mathcal{F}\left\{y_{a 1}(t)\right\} . \mathcal{F}\left\{y_{a 1}(t)\right\}$ is an aliased version of $\mathcal{F}\left\{x_{a}(t)\right\}$.
(b) $y_{a 1}(t) \neq x_{a}^{2}(t)$ for the same reason as in part (a).
(c)

$$
\begin{aligned}
x_{a}(t) & =A \cos (2 \pi 15 t) \\
x_{a}^{3}(t) & \left.=3 / 4 \cdot A^{3} \cdot \cos (2 \pi 15 t)+1 / 4 \cdot A^{3} \cdot \cos (3 \cdot 2 \pi 15 t)\right)=y_{a}(t) \\
y(n) & \left.=x^{3}(n)=3 / 4 A^{3} \cdot \cos (2 \pi 15 n T)+1 / 4 \cdot A^{3} \cdot \cos (3 \cdot 2 \pi 15 n T)\right), \quad T=1 / f_{s} \\
y(n) & =3 / 4 A^{3} \cdot \cos \left(\frac{3}{4} \pi n\right)+1 / 4 \cdot A^{3} \cdot \cos \left(\frac{1}{4} \pi n\right) \\
y(n) & =x^{3}(n) \quad \Rightarrow \quad y_{1}(n)=x(n) .
\end{aligned}
$$

(d) This is the inverse part to (c). Since multiplication in time corresponds to convolution in frequency, a signal $x_{a}^{2}(t)$ has at most twice the bandwidth of $x_{a}(t)$. Therefore, $x_{a}^{1 / 2}(t)$ will have at least half the bandwodth of $x_{a}(t)$. If we run our signal through a box that will raise it to the $1 / M$-th power, then the sampling frequency can be decreased by a factor of M.

