HOGMep
Variational Bayes and higher-order graphical models applied to Joint Image Recovery and Segmentation
Abstract
Variational Bayesian approaches have been successfully applied to image segmentation. They usually rely on a Potts model for the hidden label variables and a Gaussian assumption on pixel intensities within a given class. Such models may however be limited, especially in the case of multicomponent images. We overcome this limitation with HOGMep, a Bayesian formulation based on a higher-order graphical model (HOGM) on labels and a Multivariate Exponential Power (MEP) prior for intensities in a class. Then, we develop an efficient statistical estimation method to solve the associated problem. Its flexibility accommodates to a broad range of applications, demonstrated on multicomponent image segmentation and restoration.